## **STAI30HIF(L201) - Class #I**

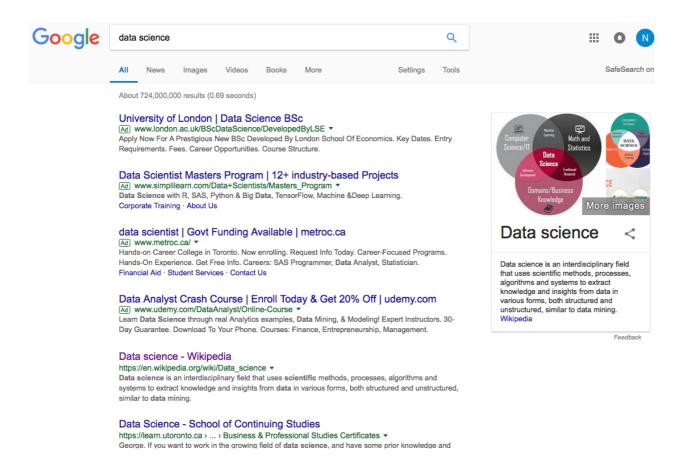
#### Welcome to the Course

Prof. Nathalie Moon

2018-10-09

# Welcome to STA130 (2)

#### This class


- What is data science?
- What is statistical reasoning?
- Introduction to the course (syllabus, website, etc.)
- Introduction to R and RStudio.
- Distributions of quantitative and categorical variables.
- Plotting distributions using ggplot2.

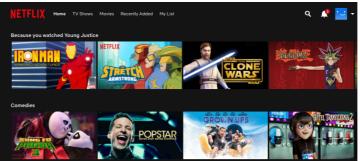
#### What is data science?

Data science is an exciting discipline that allows you to turn raw data into understanding, insight, and knowledge. We're going to learn to do this in a tidy way – more on that later!

#### **Applications of Data Science**

 Internet search: Google, Yahoo, Bing, etc. use data science algorithms to rank web pages for a search query.




#### **Applications of Data Science**

■ Recommender Systems: Netflix, Hinge, Amazon, Google, etc. use data science algorithms in recommender systems to suggest products (or dating partners) in accordance with user's interests.

Match Group dating app Hinge to use machine learning for better matches



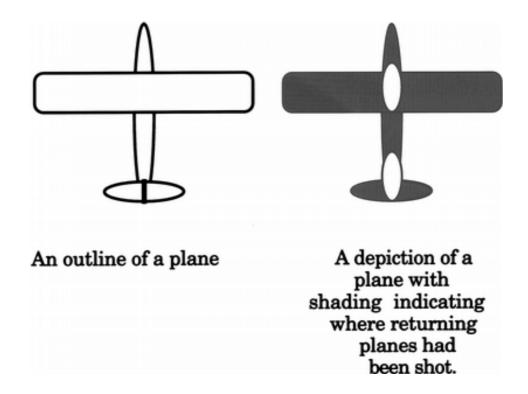




## **Applications of Data Science**

■ Logistics, health care, image and speech recognition, ...

## What is Statistical Reasoning




- Abraham Wald born in 1902 in Austria.
- Emigrated to the U.S. and eventually became a professor at Columbia.
- During World War II he spent much of his time in the Statistical Research Group (SRG). A classified program that assembled the best American statisticians to the war effort.

## What is statistical reasoning?



- The SRG was in an apartment building in NYC a few blocks from Columbia U.
- The SRG was a very influential group and the military frequently listened to their advice.
- Wald at the time was still an "enemy alien", he was not technically allowed to see the reports he was producing.



**Question:** You don't want planes to get shot down by enemy fighters, so you amour them. But armour makes planes heavier, and are less maneuverable and use more fuel. Armouring planes too much is a problem; armouring the planes too little is a problem.



Planes were covered in bullet holes, but the holes weren't uniformly distributed across the aircraft.

Data from American planes that came back from engagements over Europe.

Question: Which parts of the plane have the greatest need for armour?

| Section of Plane                 | Bullet holes per square foot |
|----------------------------------|------------------------------|
| Engine                           | 1.11                         |
| Fuselage (main body of aircraft) | 1.73                         |
| Fuel system                      | 1.55                         |
| Rest of plane                    | 1.8                          |

The officers saw an opportunity for efficiency.

Get the same protection with less armour if you concentrate on places with the greatest need.

They asked Wald how much more armour belonged on those parts of the plane.

| Section of Plane                 | Bullet holes per square foot |
|----------------------------------|------------------------------|
| Engine                           | 1.11                         |
| Fuselage (main body of aircraft) | 1.73                         |
| Fuel system                      | 1.55                         |
| Rest of plane                    | 1.8                          |

What do you think?

Go to pollev.com/loop

#### Who am I?

- nathalie.moon@utoronto.ca
- http://sta130.utstat.toronto.edu
- ill Sidney Smith, SS6024A
- Monday 4:00-5:30 (after class I'll go to my office).

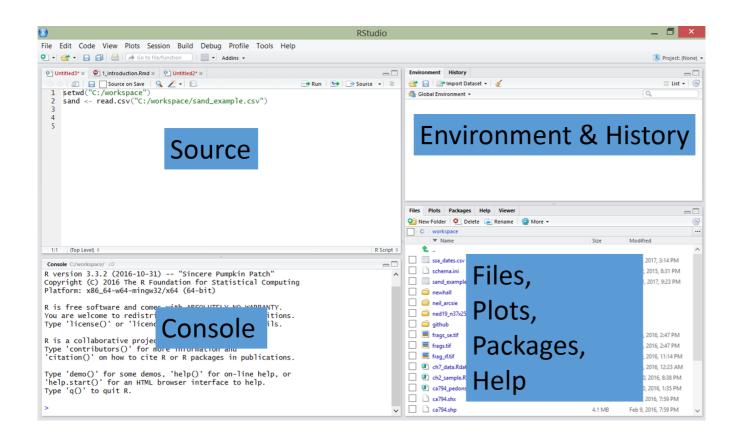
#### What is this course?

Everything you want to know about the course, and everything you will need for the course will be posted at

#### http://sta130.utstat.toronto.edu

- Will we be doing computing? Yes.
- Is this an intro CS course? No, but many themes are shared.
- Is this an intro stat course? Yes, but it's not your high school statistics course.
- What computing language will we learn? R.
- Why not language X? We can discuss that over <sup>®</sup>.

#### Create an RStudio.cloud account


- I. Go to rstudio.cloud and click on "Get Started"
- 2. Create an account
- 3. Click here to join the workspace for STA130

When you log in to Rstudio.cloud, you'll now have two "Spaces" on the left hand side:

- YourWorkspace
- STA130\_Fall2018

Instructions for getting started with Week I Practice Problems can be found on the course webpage

#### Introduction to RStudio



- Create a project
- Create a notebook (.Rmd file)
- Insert a code chunk

## World happiness

#### What influences your happiness?

We'll look at the data from the World Happiness Report 2017

#### Video

Data from the Gallup World Poll is in the file happinessdata\_2017.csv.

#### Read the data into R

# Read in the data

happinessdata\_2017 <- read\_csv("happinessdata\_2017.csv")</pre>

#### View the data

There are two ways to view a data set in RStudio.

I. Click on the Environment tab in the upper right hand corner (Environment, History, Connections pane). Then click on the data set



2. Type glimpse(happinessdata\_2017) in an R code chunk.

# type the command here

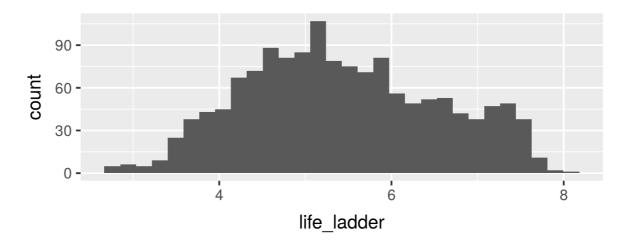
### **Questions:**

- I. What does each row and column represent?
- 2. How many rows and columns are in happinessdata\_2017?

### How is happiness measured and ranked?

The rankings are based on answers to the main life evaluation question asked in the poll. This is called the Cantril ladder: it asks respondents to think of a ladder, with the best possible life for them being a 10, and the worst possible life being a 0. They are then asked to rate their own current lives on that 0 to 10 scale. (Ref: http://worldhappiness.report/faq/)

# What's the distribution of the Cantril ladder?


- We need to figure out the variable name of Cantril ladder.
- life\_ladder average response for a country to the question: "Please imagine a ladder, with steps numbered from 0 at the bottom to 10 at the top. The top of the ladder represents the best possible life for you and the bottom of the ladder represents the worst possible life for you. On which step of the ladder would you say you personally feel you stand at this time?"
- The life\_ladder variable is an example of a numerical (quantitative)
   variable. A quantitative variable takes numerical values that are ordered and differences are meaningful.
- The distribution of a variable tells us what values it takes and how often it takes these values.

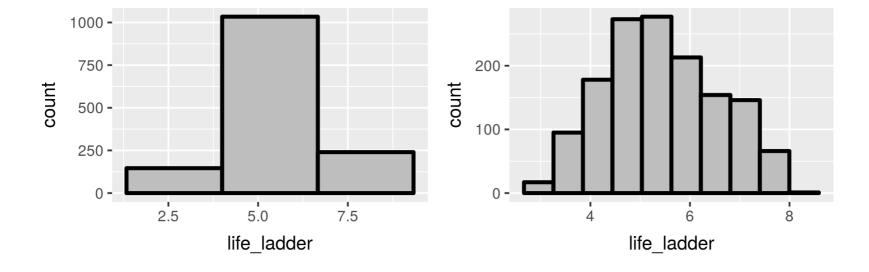
# **Examining the distribution of life\_ladder: histogram**

```
library(tidyverse)
ggplot(data = happinessdata_2017) +
  aes(x = life_ladder) +
  geom_histogram() +
  theme_gray(base_size=5)
```

#### produces this plot (histogram)

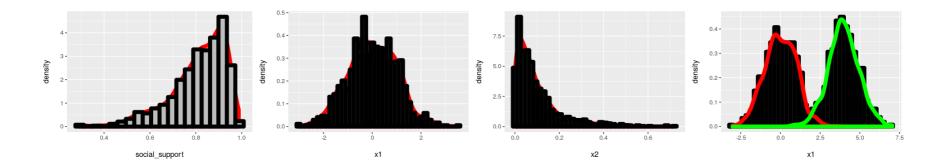
```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```




#### Constructing a histogram

- Count the number of numerical values that lie within ranges, called bins.
- Bins are defined by their lower bounds (inclusive); the upper bound is the lower bound of the next bin.
- Histogram displays the distribution (count (default) or density) of the numerical values in the bins.
- Horizontal axis is numerical, hence no gaps.

### Number of bins of a histogram


```
library(tidyverse)
ggplot(data = happinessdata_2017) +
  aes(x = life_ladder) +
  # colour is outline of bin
geom_histogram(bins = 3, colour = "black", fill = "grey")

ggplot(data = happinessdata_2017) +
  aes(x = life_ladder) +
  geom_histogram(bins = 10, colour = "black", fill = "grey")
```



#### **Properties of distributions**

- Shape of the distribution:
- could be symmetric, left-skewed, right-skewed (skew is to the direction of the longer tail)
- number of **modes (peaks)**: unimodal, bimodal, multimodal, uniform
- unusual observations



#### **Graphical exploration of data**

We'll use the ggplot2 package in R to construct our graphs.

"gg" = Grammar of Graphics (Leland Wilkinson), a structure to combine graphical elements together to make a meaningful display of data

To use ggplot2 functions, need to first load the package ggplot2, which is also part of the tidyverse package.

library(tidyverse)

## ggplot2

In ggplot2, the structure of the code to produce most plots is

```
ggplot(data=[datset],
    aes(x=[var1],
    y=[var2])) +
geom_xxx() +
other options
```

- **aesthetic**: mapping between a variable and where it will be represented on the graph (e.g., x axis, colour-coding, etc.)
- **geometry**: what are you plotting (e.g., points, lines, histogram, etc.)

#### Notes:

```
- Every plot must have at least one geometry and there is no upper limit
- You add a geometry to a plot using `+`
```

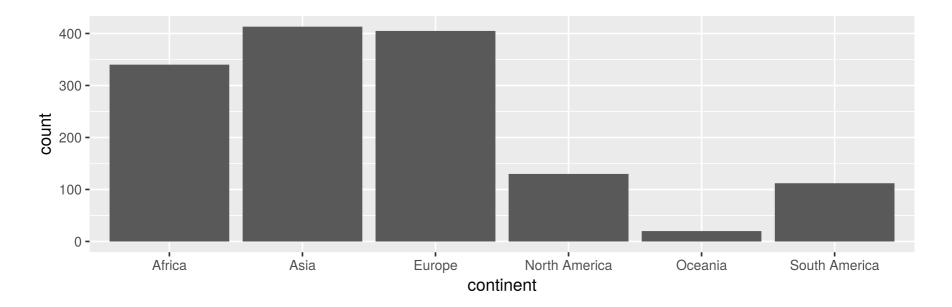
## histogram using ggplot2

```
library(tidyverse)
ggplot(data = happinessdata_2017) +
  aes(x = life_ladder) +
  geom_histogram()
```

- Just need one aesthetic, x.
- Why?

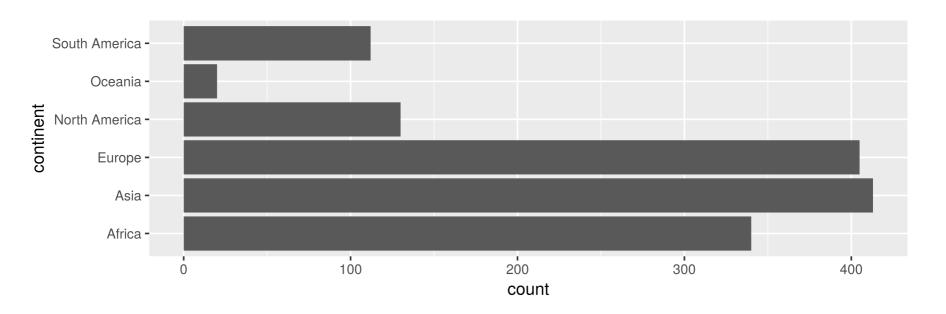
# Basic plot for a categorical variable: bar plot

#### **Categorical variable**:


- A categorical variable takes a discrete number of values that are not ordered (e.g. country, continent, etc)
- Sometimes these may be coded as numbers in the data (e.g. male = I, female = 0), but there is no meaningful ordering and the numerical differences are not important.

#### Bar plot

- Displays the distribution of a categorical variable, the frequency of its different values
- Heights (or lengths) of bars are proportional to the percent of individuals
- Bars have arbitrary (but equal) widths and spacings

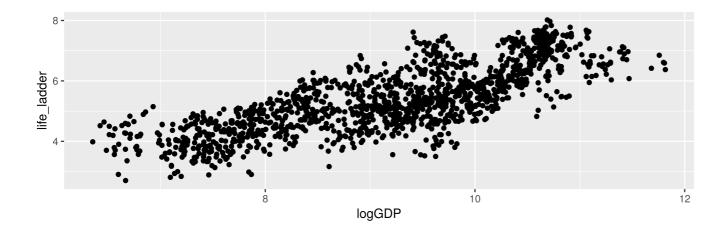

## Bar plot example

```
ggplot(data = happinessdata_2017, aes(x = continent)) +
  geom_bar()
```



# An alternative, particularly useful for long labels

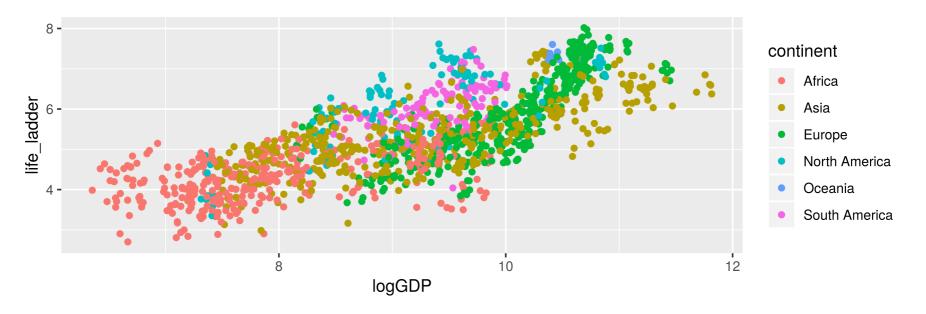
```
ggplot(data = happinessdata_2017, aes(x = continent)) +
   geom_bar() +
   coord_flip()
```




# Looking at the relationship between two variables

What is the relationship between happiness and wealth?

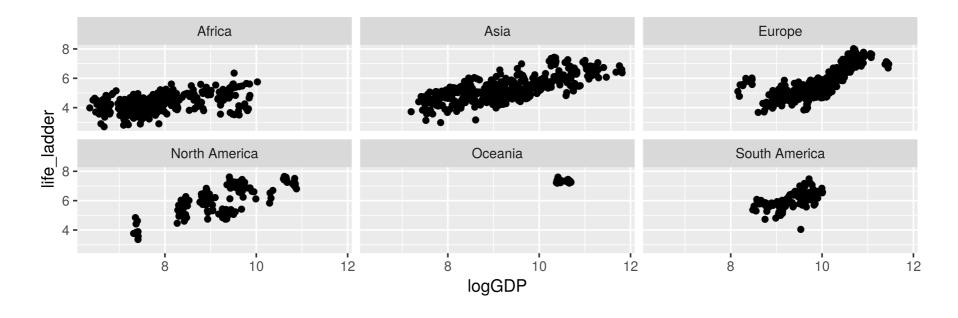
```
library(tidyverse)
ggplot(data = happinessdata_2017) +
  aes(x = logGDP, y = life_ladder) +
  geom_point()
```


## Warning: Removed 35 rows containing missing values (geom\_point).



# What is the relationship between happiness, wealth, and continent?

```
library(tidyverse)
ggplot(data = happinessdata_2017, ) +
  aes(x = logGDP, y = life_ladder, colour = continent) +
  geom_point()
```


## Warning: Removed 35 rows containing missing values (geom\_point).



Colour the points by continent.

# Alternate way of looking at the relationship between three variables

```
library(tidyverse)
ggplot(data = happinessdata_2017, ) +
  aes(x = logGDP, y = life_ladder) +
  geom_point() +
  facet_wrap(~continent)
```



facet\_wrap() produces a sequence of rectangular plots.

#### To do this week

- Create an account with RStudio.cloud
- Join the workspace for STA130
- Work on the week I practice problems and bring your solutions to your tutorial on Friday