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Advertising Example
Suppose that we are statistical consultants hired by a client to provide
advice on how to improve sales of a particular product.

The Advertising data set consists of the sales of that product in 200
di!erent markets, along with advertising budgets for the product in
each of those markets for three di!erent media: TV, radio, and
newspaper.

glimpse(Advertising)

## Observations: 200
## Variables: 4
## $ TV        <dbl> 230.1, 44.5, 17.2, 151.5, 180.8, 8.7, 57.5, 120.2, 8...
## $ radio     <dbl> 37.8, 39.3, 45.9, 41.3, 10.8, 48.9, 32.8, 19.6, 2.1,...
## $ newspaper <dbl> 69.2, 45.1, 69.3, 58.5, 58.4, 75.0, 23.5, 11.6, 1.0,...
## $ sales     <dbl> 22.1, 10.4, 9.3, 18.5, 12.9, 7.2, 11.8, 13.2, 4.8, 1...
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Advertising Example
It is not possible for our client to directly increase sales of the product,
but they can control the advertising expenditure in each of the three
media.

Therefore, if we determine that there is an association between
advertising and sales, then we can instruct our client to adjust
advertising budgets, thereby indirectly increasing sales.
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Increasing sales through advertising
What is the relationship between sales and TV budget?

Advertising %>% 
  ggplot(aes(x = TV, y = sales)) + 
  geom_point() + theme_minimal()
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Increasing sales through advertising
In general, as the budget for TV increases sales increases.

Although, sometimes increasing the TV budget didn't increase sales.

The relationship between these two variables is approximately linear.
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Linear Relationships
A perfect linear relationship between an independent variable  and
dependent variable  has the mathematical form:

 is called the -intercept and  is called the slope.

x
y

y = + x.β0 β1

β0 y β1
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Linear Relationships: The
equation of a straight line
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Linear Relationships: The equation of
a straight line
If the relationship between  and  is perfectly linear then the scatter plot
could look like:

y x
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Linear Relationships: The equation of
a straight line
What is the equation of straight line that fits these points?

First four observations:

## # A tibble: 4 x 2
##       x     y
##   <dbl> <dbl>
## 1     0    0 
## 2     2  133.
## 3     4  267.
## 4     6  400 11 / 47



Fitting a straight line to data
Use analytic geometry to find the equation of the straight line: pick two any
points  and  on the line.

The slope is:

So the equation of the line with slope  passing through  is

where 

( , )x(1) y(1) ( , )x(2) y(2)

m = .−y(1) y(2)

−x(1) x(2)

m ( , )x(1) y(1)

y − = m(x − ) ⇒ y = mx + b,y(1) x(1)

b = − m .y(1) x(1)
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Linear Relationships: The equation of
a straight line
What is the equation of the 'best' straight line that fits these points? 

## # A tibble: 4 x 2
##       x     y
##   <dbl> <dbl>
## 1    -4    16
## 2    -2     4
## 3     0     0
## 4     2     4
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Relationships between two variables
Sometimes the relationship between two variables in non-linear.

If the realtionship is non-linear then fitting a straight line to the data is
not useful in describing the relationship.
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Example of Non-linear relationships
Let  be life expectancy of a component, and  the age of the
component.

There is a relationship between  and , but it is not linear.

p <- data_frame(x = age, y = life_exp) %>% 
  ggplot(aes(x = x, y = y)) + geom_point() + theme_minimal() 
p

p + geom_smooth(method = "lm", se = F)

y x

y x
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Tidy the Advertising Data
Each market is an observation, but each column is the amount spent
on TV, radio, newspaper advertising.

## # A tibble: 3 x 4
##      TV radio newspaper sales
##   <dbl> <dbl>     <dbl> <dbl>
## 1 230.   37.8      69.2  22.1
## 2  44.5  39.3      45.1  10.4
## 3  17.2  45.9      69.3   9.3

The data are not tidy since each column corresponds to the values of
advertising budget for di!erent media.
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Tidy the Advertising Data
Tidy the data by creating a column for advertising budget and another
column for type of advertising.

We can use the gather function in the tidyr library (part of the
tidyverse library) to tidy the data.

Advertising_long <- Advertising %>% 
  select(TV, radio, newspaper, sales) %>% 
  gather(key = adtype, value = amount, TV, radio, newspaper)
head(Advertising_long)

## # A tibble: 6 x 3
##   sales adtype amount
##   <dbl> <chr>   <dbl>
## 1  22.1 TV      230. 
## 2  10.4 TV       44.5
## 3   9.3 TV       17.2
## 4  18.5 TV      152. 
## 5  12.9 TV      181. 
## 6   7.2 TV        8.7
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Advertising Data
Advertising_long %>% 
  ggplot(aes(amount, sales)) + 
  geom_point() + 
  geom_smooth(method = "lm", se = FALSE) +
  facet_grid(. ~ adtype)

The advertising budgets (newspaper, radio, TV) are the
input/independent/covariates and the dependent variable is sales. 19 / 47



Linear Regression Models
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Simple Linear Regression
The simple linear regression model can describe the relationship between
sales and amont spent on radio advertising through the model

where  and  is the number of observations.

Advertising_long %>% 
  filter(adtype == "radio") %>%
  ggplot(aes(amount, sales)) + 
  geom_point()

= + + ,yi β0 β1xi ϵi

i = 1, … , n n
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Simple Linear Regression
The equation:

is called a regression model and since we have only one independent
variable it is called a simple regression model.

 is called the dependent or target variable.

 is the intercept parameter.

 is the independent variable, covariate, feature, or input.

 is called the slope parameter.

 is called the error parameter.

= + +yi β0 β1xi ϵi

yi

β0

xi

β1

ϵi
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Multiple Linear Regression
In general, models of the form

where , with  independent variables are called multiple
regression models.

The 's are called parameters and the 's errors.

The values of of neither 's nor 's can ever be known, but they can
be estimated.

The "linear" in Linear Regression means that the equation is linear in
the parameters .

This is a linear regression model: 

This is not a linear regression model: 
. This is called a nonlinear

regression model.

= + + + ⋯ + + ,yi β0 β1xi1 β2xi2 βkxik ϵi

i = 1, … , n k > 1

βj ϵi

βj ϵi

βj

= + + +yi β0 β1 xi1‾‾‾√ β2x2
i2 ϵi

= + sin( ) + +yi β0 β1 xi1 β2xi2 ϵi
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Least Squares

24 / 47



Fitting a straight line to Sales and
Radio Advertising

## # A tibble: 6 x 2
##   sales amount
##   <dbl>  <dbl>
## 1  22.1   37.8
## 2  10.4   39.3
## 3   9.3   45.9
## 4  18.5   41.3
## 5  12.9   10.8
## 6   7.2   48.9
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Fitting a straight line to Sales and
Radio Advertising
head(Advertising_long %>% 
  filter(adtype == "radio")) %>%
  select(sales,amount)

## # A tibble: 6 x 2
##   sales amount
##   <dbl>  <dbl>
## 1  22.1   37.8
## 2  10.4   39.3
## 3   9.3   45.9
## 4  18.5   41.3
## 5  12.9   10.8
## 6   7.2   48.9

 -5.85,  243.23. So, the

equation of the straight line is:

m = =22.1−10.4
37.8−39.8 b = 22.1 − × 37.8 =22.1−10.4

37.8−39.8

y = 243.23 − 5.85x.
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Fitting a straight line to Sales and
Radio Advertising
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The equation  is shown on the scatter plot.y = 243.23 − 5.85x

28 / 47



Fitting a straight line to Sales and
Radio Advertising

For a fixed value of amount spent on radio ads the corresponding sales
has variation. It's neither strictly increasing nor decreasing.

But, the overall pattern displayed in the scatterplot shows that on
average sales increase as amount spent on radio ads increases.
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Least Squares
The Least Squares approach is to find the y-intercept  and slope  of the
straight line that is closest to as many of the points as possible.

β0 β1
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Estimating the coe!icients: Least
Squares
To find the values of  and slope  that fit the data best we can minimize
the sum of  (squared errors):

So, we want to minimize a function of 

where 's are numbers and therfore constants.

β0 β1
=ϵ2

i ( − − )yi β0 β1xi
2

= .∑
i= 1

n
ϵ2

i ∑
i= 1

n
( − − )yi β0 β1xi

2

,β0 β1

L( , ) = ,β0 β1 ∑
i= 1

n
( − − )yi β0 β1xi

2

xi
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Estimating the coe!icients: Least
Squares

The derivative of  with respect to  treats  as a constant.
This is also called the partial derivative and is denoted as 

To find the values of  and  that minimize  we set the
partial derivatives to zero and solve:

The values of  and  that are solutions to above equations are denoted 
 and  respectively.

L( , )β0 β1 β0 β1
.∂L

∂β0

β0 β1 L( , )β0 β1

∂L
∂β0

∂L
∂β1

= −2 ( − − ) = 0,∑
i= 1

n
yi β0 β1xi

= −2 ( − − ) = 0.∑
i= 1

n
yi β0 β1xi xi

β0 β1
β ̂ 

0 β ̂ 
1
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Estimating the coe!icients: Least
Squares
It can be shown that

where, , and 

 and  are called the least squares estimators of  and .

β0̂

β1̂

= −ȳ β1̂ x̄

= ,
( ) − n∑n

i= 1 yixi x̄ȳ
( ) − n∑n

i= 1 x2
i x̄2

= /nȳ ∑n
i= 1 yi = /n.x̄ ∑n

i= 1 xi

β ̂ 
0 β ̂ 

1 β0 β1
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Estimating the Coe!icients Using R -
Formula syntax in R
The R syntax for defining relationships between inputs such as amount
spent on newspaper advertising and outputs such as sales is:

sales ~ newspaper

The tilde ~ is used to define the what the output variable (or outcome, on
the le"-hand side) is and what the input variables (or predictors, on the
right-hand side) are.

A formula that has three inputs can be written as

sales ~ newspaper + TV + radio
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Estimating the Coe!icients Using lm()
mod_paper <- lm(sales ~ newspaper, data = Advertising)
mod_paper_summary <- summary(mod_paper)
mod_paper_summary$coefficients

##               Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 12.3514071 0.62142019 19.876096 4.713507e-49
## newspaper    0.0546931 0.01657572  3.299591 1.148196e-03

(Intercept) is the estimate of .

newspaper is the estimate of .

β ̂ 
0

β ̂ 
1

35 / 47



The blue line is the estimated
regression line with intercept
12.35 and slope 0.05.

geom_smooth(method = "lm", se

= FALSE) adds the linear
regression to the scatterplot
without a confidence interval
for the linear regression line
(this is set via se = FALSE).

Advertising_long %>% 
  filter(adtype == "radio") %>%
  ggplot(aes(amount, sales)) + 
  geom_point() +
  geom_smooth(method = "lm", 
              se = FALSE) + 
  theme_minimal()

Estimating the Coe!icients Using R
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Interpreting the Slope and Intercept
with a Continuous Explanatory
Variable
The estimated linear regression of sales on newspaper is:

where  is sales in the  market and  is the dollar amount spent on
newspaper advertising in the  market.

The slope  is the amount of change in  for a unit change in .

Sales increase by 0.05 for each dollar spent on advertising.

The intercept  is the average of  when .

The average sales is 12.35 when the amount spent on advertising is
zero.

= 12.35 + 0.05 ,yi xi

yi ith xi
ith

β ̂ 
1 y x

β ̂ 
0 y = 0xi
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Prediction using a Linear Regression
Model
A"er a linear regression model is estimated from data it can be used to
calculate predicted values using the regression equation

 is the predicted value of the  response .

The  residual is

= + .y ̂ i β ̂ 
0 β ̂ 

1xi

y ̂ i ith yi

ith

= − .ei yi y ̂ i
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Prediction using a Linear Regression
Model
The amount spent on newspaper advertising in the first market is:

Advertising %>% filter(row_number() == 1)

## # A tibble: 1 x 4
##      TV radio newspaper sales
##   <dbl> <dbl>     <dbl> <dbl>
## 1  230.  37.8      69.2  22.1

The predicted sales using the regression model is: 
 16.14.

The observed sales for region is 22.1.

The error or residual is  5.96.

12.35 + 0.05 × 69.2 =

− =y1 y1̂
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Prediction using a Linear Regression
Model
The predicted and residual values from a regression model can be obtained
using the predict() and residual() functions.

mod_paper <- lm(sales ~ newspaper, data = Advertising)
sales_pred <- predict(mod_paper)
head(sales_pred)

##        1        2        3        4        5        6 
## 16.13617 14.81807 16.14164 15.55095 15.54548 16.45339

sales_resid <- residuals(mod_paper)
head(sales_resid)

##         1         2         3         4         5         6 
##  5.963831 -4.418066 -6.841639  2.949047 -2.645484 -9.253389
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Measure of Fit for Simple Regression
The regression model is a good fit when the residuals are small.

Thus, we can measure the quality of fit by the sum of squares of the
residuals .

This quantity depends on the units in which 's are measured. A
measure of fit that does not depend on the units is:

 is o"en called the coe!cient of determination.

 where 1 indicates a perfect match between the observed
and predicted values and 0 indicates an poor match.

( −∑n
i= 1 yi y ̂ i)2

yi

= 1 − .R2 ∑n
i= 1 e2

i

( −∑n
i= 1 yi ȳ)2

R2

0 ≤ ≤1,R2
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Measure of Fit for Simple Regression
The summary() method calculates 

mod_paper <- lm(sales ~ newspaper, data = Advertising)
mod_paper_summ <- summary(mod_paper)
mod_paper_summ$r.squared

## [1] 0.05212045

 0.0521204. This indicates a poor fit.

R2

=R2
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Using Linear Regression as a Machine
Learning/Supervised Learning Tool
The diamonds data set contains the prices and other attributes of almost
54,000 diamonds. The variables are as follows:

## Observations: 53,940
## Variables: 10
## $ carat   <dbl> 0.23, 0.21, 0.23, 0.29, 0.31, 0.24, 0.24, 0.26, 0.22, ...
## $ cut     <ord> Ideal, Premium, Good, Premium, Good, Very Good, Very G...
## $ color   <ord> E, E, E, I, J, J, I, H, E, H, J, J, F, J, E, E, I, J, ...
## $ clarity <ord> SI2, SI1, VS1, VS2, SI2, VVS2, VVS1, SI1, VS2, VS1, SI...
## $ depth   <dbl> 61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, ...
## $ table   <dbl> 55, 61, 65, 58, 58, 57, 57, 55, 61, 61, 55, 56, 61, 54...
## $ price   <int> 326, 326, 327, 334, 335, 336, 336, 337, 337, 338, 339,...
## $ x       <dbl> 3.95, 3.89, 4.05, 4.20, 4.34, 3.94, 3.95, 4.07, 3.87, ...
## $ y       <dbl> 3.98, 3.84, 4.07, 4.23, 4.35, 3.96, 3.98, 4.11, 3.78, ...
## $ z       <dbl> 2.43, 2.31, 2.31, 2.63, 2.75, 2.48, 2.47, 2.53, 2.49, ...

Question: Predict the price of diamonds based on carot size.
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Predicting the Price of Diamonds
Let's select training and test sets.

set.seed(2)
diamonds_train <- diamonds %>% 
  mutate(id = row_number()) %>% 
  sample_frac(size = 0.8)

diamonds_test <- diamonds %>% 
  mutate(id = row_number()) %>% 
  # return all rows from diamonds where there are not 
  # matching values in diamonds_train, keeping just 
  # columns from diamonds.
  anti_join(diamonds_train, by = 'id')
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Predicting the Price of Diamonds
Now fit a regression model on diamonds_train.

mod_train <- lm(price ~ carat, data = diamonds_train)
mod_train_summ <- summary(mod_train)
mod_train_summ$r.squared

## [1] 0.8488647

Evaluate the prediction error using root mean square error using the
training model on diamonds_test.

RMSE can be used to compare di!erent sizes of data sets on an equal
footing and the square root ensures that RMSE is on the same scale as 

.

RMSE = ( −1
n∑

i= 1

n
yi y ̂ i)2

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾

⎷


y

45 / 47



Predicting the Price of Diamonds
using Simple Linear Regression

Calculate RMSE using test and training data.

y_test <- diamonds_test$price
yhat_test <- predict(mod_train, newdata = diamonds_test)
n_test <- length(diamonds_test$price)

# test RMSE
rmse <- sqrt(sum((y_test - yhat_test)^2) / n_test)
rmse

## [1] 1553.295

y_train <- diamonds_train$price
yhat_train <- predict(mod_train, newdata = diamonds_train)
n_train <- length(diamonds_train$price)

# train RMSE
sqrt(sum((y_train - yhat_train)^2) / n_train)

## [1] 1547.391 46 / 47



mrmod_train <- lm(price ~ carat + cut + 
                    color + clarity, 
                  data = diamonds_train)
mrmod_train_summ <- summary(mrmod_train)
mrmod_train_summ$r.squared

## [1] 0.9152898

y_test <- diamonds_test$price
yhat_test <- predict(mrmod_train, 
                     newdata = diamonds_test)
n_test <- length(diamonds_test$price)
mr_rmse <- 
  sqrt(sum((y_test - yhat_test)^2) / n_test)
mr_rmse

## [1] 1149.881

The simple linear regression
model had  0.8488647
and RMSE = 1553.2953095.

Predicting the Price of Diamonds
using Multiple Linear Regression
We will add other variables to the regression model to investigate if we can
decrease the prediction error.

=R2
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