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This Class

= Relationships between two variables

= Linear Relationships: The equation of a straight line

= Linear regression models

= Estimating the coefficients: Least Squares

= |nterpreting the slope with a continuous explanatory variable

= Prediction/Supervised learning using a linear regression model
= R? - Coefficient of Determination

= |ntroduction to Multiple Regression
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Relationships between two
variables

3 /47



Advertising Example

= Suppose that we are statistical consultants hired by a client to provide
advice on how to improve sales of a particular product.

= The Advertising data set consists of the sales of that product in 200
different markets, along with advertising budgets for the productin
each of those markets for three different media: TV, radio, and
newspaper.

glimpse (Advertising)

## Observations: 200
## Variables: 4

## S TV <dbl> 230.1, 44.5, 17.2, 151.5, 1860.8, 8.7, 57.5, 120.2, 8..
## $ radio <dbl> 37.8, 39.3, 45.9, 41.3, 10.8, 48.9, 32.8, 19.6, 2.1,..
## $ newspaper <dbl> 69.2, 45.1, 69.3, 58.5, 58.4, 75.0, 23.5, 11.6, 1.0,..
## $ sales <dbl> 22.1, 10.4, 9.3, 18.5, 12.9, 7.2, 11.8, 13.2, 4.8, 1..
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Advertising Example

= |tis not possible for our client to directly increase sales of the product,
but they can control the advertising expenditure in each of the three
media.

= Therefore, if we determine that there is an association between
advertising and sales, then we can instruct our client to adjust
advertising budgets, thereby indirectly increasing sales.
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Increasing sales through advertising
What is the relationship between sales and Tv budget? 0\‘)(;3}0"/’%

Advertising %>%
ggplot(aes(x = TV, y = sales)) +
geom_point() + theme_minimal()
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Increasing sales through advertising

= |n general, as the budget for Tv increases sales increases.
= Although, sometimes increasing the Tv budget didn't increase sates.

= The relationship between these two variables is approximately linear.
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Linear Relationships

A perfect linear relationship between an independent variable x and
dependent variable y has the mathematical form:

y = po + prix.
Py is called the y-intercept and /3 is called the slope.
3
3
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Linear Relationships: The
equation of a straight line
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Linear Relationships: The equation of
a straight line

If the relationship between y and x is perfectly linear then the scatter plot
could look like:
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Linear Relationships: The equation of \
a straight line \e JONS

(Cvec
What is the equation of straight line that fits these points? /
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First four observations: S\\O?Q_— QQH—-(B —_— (Q:l/

## # A tibble: 4 x 2
## X y

SN
#4  <dbl> <dbl> !D_"_’ Q@:\, — Q)j\,*(/( st fﬂ__

## 1 0] 0]
## 2 2 133.

## 3 4 267.
## 4 6 400 %.: —_l"ﬂ' 621’ 11/47




Fitting a straight line to data

Use analytic geometry to find the equation of the straight line: pick two any
points (x'V, y(V) and (x?, y?) on the line.

The slope is:

1 2
. Y @
y() _ @

So the equation of the line with slope m passing through (x(V), y(1) is

y—y(l) =m(x—x(1)) =>y=mx+Db,

where b = y — mx .
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Linear Relationships: The equation of
a straight line

What is the equation of the 'best' straight line that fits these points?
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Relationships between two
variables
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Relationships between two variables

= Sometimes the relationship between two variables in non-linear.

= |f the realtionship is non-linear then fitting a straight line to the data is
not useful in describing the relationship.
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Example of Non-linear relationships

= | ety be life expectancy of a component, and x the age of the
component.

= Thereis arelationship between y and x, but it is not linear.
p <- data_frame(x = age, y = life_exp) %>%

ggplot(aes(x = x, y = y)) + geom_point() + theme_minimal()
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Tidy the Advertising Data

= Each marketis an observation, but each column is the amount spent
on TV, radio, newspaper advertising.

## # A tibble: 3 x 4

#i TV radio newspaper sales
#it <db1* <db <db1l> <dbl>
4 é# 69.2 22.1 —— \GErRe A
## 45.1 10 4 2
#H# 17.2 45.9 69.3 :S

= The data are not tidy since each column corresponds to the values of
advertising budget for different media.
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Tidy the Advertising Data

= Tidy the data by creating a column for advertising budget and another
column for type of advertising.

= We can use the gather function in the tidyr library (part of the
tidyverse library) to tidy the data.

Advertising_ long <- Advertising %>%
select(T newspaper, sales) %>%
gathe'(key = value = amount, TV, radio, newspaper)

head (Adve

 # A bl e KQ_ (AO\,’? . /Q(AM

## dtyp amount N

H# .- <db

## 1 1 230. kQ A \Qf\g AGUX‘U\/R&M
## 2 1@ 4 445

## 3 9.3 TV 17.2 \

#4 4 18.5 TV 152, <

#4 5 12.9 TV 181. 60&@\ \.I\)‘f% \.\,6

4 6 7.2 TV 8.7
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Vsl
Advertising_long %>% O\AAS )(\\L \\Mff-

ggplot(aes(amount, sales)) +

geom_point() + / \:\(\9\4

geom_smooth(method = "1lm", se = FALSE) + N
facet_grid(. ~ adtype) \\_ (_A i ; L;\)(V\L &(‘

newspaper radio TV
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<

i . " LV\&PQU\&M‘ (fo.wab(l
= The advertising budgets (newspaper, radio, Tv) are the

input/independent/covariates and the dependent variable is sales.



Linear Regression Models
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Simple Linear Regression

The simple linear regression model can describe the relationship between

sales and amont spent on radio advertising through the model ~ O\A)O-"L
= po + Pix; + €, 2
NN I evrer - for b

wherei = 1, ...,n and nis the number of observations.

Advertising_long %>%
filter(adtype == "radio") %>%
ggplot(aes(amount, sales)) +
geom_point()
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Simple Linear Regression

2L
The equation: q,’ - g vj\\/"B
Yi = ﬂO +,51Xi + €; PV‘-QA;CM

is called a regression model and since we have only one independent
variable it is called a simple regression model.

\J o

= v, is called the dependent or target variable.

= [}y is the intercept parameter.

= x; isthe independent variable, covariate, feature, or input.
O is called the slope parameter. n A

m ¢; is called the error parameter.
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Multiple Linear Regression

In general, models of the form

vi = Po + Pixi + Paxipp + - + Prxi + €,

wherei = 1, ...,n,withk > 1 independent variables are called multiple
regression models.

» The f;'s are called parameters and the ¢; 's errors.

» The values of of neither fj;'s nor ¢;'s can ever be known, but they can
be estimated.

= The "linear" in Linear Regression means that the equation is linear in
the parameters f3; .

= Thisis a linear regression model: y; = fy + f1 /X1 + ,Ble.zz + €;
= Thisis not a linear regression model:

v; = Po + sin(fy)x;1 + Prxpn + €;. This is called a nonlinear
regression model.
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Least Squares
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Fitting a straight line to Sales and
Radio Advertising
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## # A tibble: 6 x 2 \\ﬁq-?f‘f S%QM:S S A(\‘\0\

## sales amount
dbl dbl
e S WMeSthad  USco e E5hawaty
## 2 10.4 39.3 % ‘v\ EL
#% 3 9.3  45.9 Q) (ph;g -
## 4 18.5 41.3 (\&) ) F(

## 5 12.9 10.8
## 6 7.2 48.9
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Fitting a straight line to Sales and
Radio Advertising

head (Advertising_long %>%
filter(adtype == "radio")) %>%
select(sales,amount)

## # A tibble: 6 x 2
H# sales amount
## <db1l> <dbl>

## 1 22.1 37.8
## 2 10.4 39.3
## 3 9.3 45.9
## 4 18.5 41.3
## 5 12.9 10.8
## 6 7.2 48.9

_221-104 _ _ _22.1-104 _
m = Zg—=oe =-5.85b =221 - F5o—2 X 37.8 =243.23. So, the

equation of the straight line is:

y = 243.23 — 5.85x.
—_— 26/ 47




Fitting a straight line to Sales and
Radio Advertising
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The equationy = 243.23 — 5.85x is shown on the scatter plot.
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Fitting a straight line to Sales and
Radio Advertising

= For a fixed value of amount spent on radio ads the corresponding sales
has variation. It's neither strictly increasing nor decreasing.

= But, the overall pattern displayed in the scatterplot shows that on
average sales increase as amount spent on radio ads increases.
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Least Squares

The Least Squares approach is to find the y-intercept fy and slope 1 of the
straight line that is closest to as many of the points as possible.
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Estimating the coefficients: Least
Squares

To find the values of fy and slope f; that fit the data best we can minimize
the sum of 61-2 = (y; — Po — ,lei)2 (squared errors):

Dt =) = fo—hx)
=1 i=1

So, we want to minimize a function of fy, B
n
L(Po.p1) = Z i — Po — P1x:)’
i=1

where x;'s are numbers and therfore constants.
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Estimating the coefficients: Least
Squares

= The derivative of L(f, 1) with respect to 3 treats /| as a constant.
This is also called the partial derivative and is denoted as %.
0

= To find the values of fy and 1 that minimize L(fy, 1) we set the
partial derivatives to zero and solve:

OL c

=2 Y 3~ fo—fix) = 0,
OL c

— = =2 (i —po = Pixi)x; = 0.
I i=1

The values of fy and 1 that are solutions to above equations are denoted
Po and f; respectively.
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Estimating the coefficients: Least
Squares

It can be shown that

A A
Po=y—P1x

A (Z? lyl'xl ni)_;
pi1 =

(21 1 l)_ nx’ ’
where,y = Y., yi/n,and X = Y., xi/n.

A

Py and ,BI are called the least squares estimators of 5y and f3; .
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Estimating the Coefficients Using R -
Formula syntaxinR

The R syntax for defining relationships between inputs such as amount
spent on newspaper advertising and outputs such as sales is:

sales ~ newspaper

The tilde ~ is used to define the what the output variable (or outcome, on
the left-hand side) is and what the input variables (or predictors, on the
right-hand side) are.

A formula that has three inputs can be written as

sales ~ newspaper + TV + radio
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Estimating the Coefficients Using im()
N\ s~ VV\EDéMCX

//
< ales ~ newspaper, data = Advertising)
mod—paper_su y <- summary(mod_paper)

mod_paper_summaryScoefficients

#it Estimatel Std. Error t value Pr(>|t])
(Intercept) 12.3514071\/0.62142019 19.876096 4.7

## newspaper 0.0546931 |0.01657572 3.29959XK 1.148196e-03 |

<V ~
(Intercept) isthe estimate of f,. — | O Zg/HO

B newspaper IS the estimate Ofﬂll\. — Oo O g l// 6 C?%)
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Estimating the Coefficients Using R

m The blue lineis the estimated Advertising_long %>%
. I ith i filter(adtype == "radio") %>%
regression line with intercept sEpletlans (snoure, =alas)) o
12.35 and slope 0.05.

® geom_smooth(method = "1lm", se
= FALSE) adds the linear
regression to the scatterplot
without a confidence interval
for the linear regression line
(thisis set via se = FALSE).

geom_point() +

geom_smooth(method = "1lm",
se = FALSE) +

theme_minimal()
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Interpreting the Slope and Intercept
with a Continuous Explanatory
Variable

The estimated linear regression of sales on newspaper is:
Sece paron

i 28\1 Soth- 25-

where y; is salesin the i"™ market and x; is the dollar amount spent on
newspaper advertising in the i market.

= The slope f3; is the amount of change in y for a unit change in x.

= Salesincrease by 0.05 for each dollar spent on advertising.

= Theintercept ,B; is the average of y whenx; = 0,

= The average salesis 12.35 when the amount spent on advertising is

Zero. o g\@ﬂ@fﬁ(\f\lg %e/ k\()AQ\/CQJPQ——%ﬁ;ZE
g 1o Trder pretohion | oot S8
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Prediction using a Linear Regression
Model

After a linear regression model is estimated from data it can be used to
calculate predicted values using the regression equation

V= pn. USe Me A@QR
y; is the predicted value of the i”" response y; . /@\V&YCQ \J Q\)\ W
The i residual is
e = Yi— Vi
@\@ge«\M— ?«Q\At&mj .
IEANE S atN
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Prediction using a Linear Regression
Model

The amount spent on newspaper advertising in the first market is:
Advertising %>% filter(row_number() == 1)

## # A tibble: 1 x 4
#i TV radio newspaper sales
#it <db1l> <dbl>

## 1 230. 37.8

= The predicted sales using the regression model is: A~
12.354+0.05 x 69.7 =16.14.)— = ched S%&Q}

= The observed sales for region - C)\Q@.}QN@A gﬁ“\QS
N

= The error orresidualisy; —y; =5.96.
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Prediction using a Linear Regression
Model

The predicted and residual values from a regression model can be obtained
using the predict() and residual() functions.
e e rredd) Seyect

mod_paper <- lm(sales ~ newspaper, data = Advertising)
sales_pred <- predict(mod_paper)

head(sales_pred) \\\___\d <?CL&C:LJ\‘K7¥:5 §§N‘ex§é(§¥&§ \SCkX&h&S %ESN"

## 1 2 3 4 5 6 OK\UW%inlkgﬁﬂ\

## 16.13617 14.81807 16.14164 15.55095 15.54548 16.45339 \PdkiﬁéﬁL\

sales_resid <- residuals(mod_paper)

head(sales_resid) L__’/ \[\4?53<“<U;S7QX\ pﬂgﬁigi_Ci&zjfﬂiﬁ_=

## 1 2 3 4 5 6
## 5.963831 -4.418066 -6.841639 2.949047 -2.645484 -9.253389

40 / 47



Measure of Fit for Simple Regression

= The regression model is a good fit when the residuals are small.

= Thus, we can measure the quality of fit by the sum of squares of the
residuals Y., (v; — y)?.

= This quantity depends on the units in which y;'s are measured. A
measure of fit that does not depend on the unitsiis:

Rz —1 Z?zl eiz .
Z?:l(yi — }_’)2

= R? is often called the coeffcient of determination.

= 0 < R? < 1, where lindicates a perfect match between the observed
and predicted values and 0 indicates an poor match.

5§1y- SSLW\@KQ \U\LAK'V\q5W€S§ky\ (el colafe.
@1 D, \e Vi v S Cecher ?\6\\_
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Measure of Fit for Simple Regression

The summary () method calculates R?

mod_paper <- lm(sales ~ newspaper, data = Advertising)
mod_paper_summ <- summary(mod_paper)
mod_paper_summ$r.squared

## [1] 0.05212045

= R’ =0.0521204. This indicates a poor fit.
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Using Linear Regression as a Machine
Learning/Supervised Learning Tool

The diamonds data set contains the prices and other attributes of almost
54,000 diamonds. The variables are as follows:

## Observations: 53,940
## Variables: 10

## $ carat <dbl> 0.23, 0.21, 0.23, 0.29, 0.31, 0.24, 0.24, 0.26, 0.22,
## $ cut <ord> Ideal, Premium, Good, Premium, Good, Very Good, Very G...
## S color <ord> E, E, E, I, J, J, I, H, E, H, J, J, F, J, E, E, I, J, ...
## $ clarity <ord>» SI2, SI1, VS1, VS22, SI2, VvVS2, VvSs1, SIi, VvS2, VS1, SI...
## S depth <dbl> 61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, ...
## $ table  <dbl> 55, 61, 65, 58, 58, 57, 57, 55, 61, 61, 55, 56, 61, 54...
## S price <int> 326, 326, 327, 334, 335, 336, 336, 337, 337, 338, 339,...
## S x <dbl> 3.95, 3.89, 4.05, 4.20, 4.34, 3.94, 3.95, 4.07, 3.87,
## Sy <dbl> 3.98, 3.84, 4.07, 4.23, 4.35, 3.96, 3.98, 4.11, 3.78,
##t S z <dbl> 2.43, 2.31, 2.31, 2.63, 2.75, 2.48, 2.47, 2.53, 2.49,

Question: Predict the price of diamonds based on carot size.

43 | 47



Predicting the Price of Diamonds

Let's select training and test sets.

set.seed(2)
diamonds_train <- diamonds %>%

. Celect KOV ot S
mutate(id = row_number()) %>%
sample_frac(size = 0.8) /§;{ f%vojy\W\%\

diamonds_test <- diamonds %>% QLQWAQAWang ?ugig 425(
mutate(id = row_number()) %>% »%ﬁf&}%W\
# return all rows from diamonds where there are not ES’
# matching values 1n diamonds_train, keeping just

# columns from diamonds.
anti_join(diamonds_train, by = 'id"')
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Predicting the Price of Diamonds

= Now fit a regression model on diamonds_train. U%/}vm‘w {vxg/ S
mod_train <- lm(price ~ carat, data = diamonds_train) EfB’%L ~

mod_train_summ <- summary(mod_train) CCN?%¥SC(€ij
mod_train_summ$r.squared
o

## [1] 0.8488647

= Evaluate the prediction error using root mean square error using the
training model on diamonds_test.

ln
RMSE = —Z' C—= )2
ni:l(y yi)

= RMSE can be used to compare different sizes of data sets on an equal
footing and the square root ensures that RMSE is on the same scale as

V.
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Predlctlng the Price of Diamonds s WMJ

Yo T
using Simple Linear Regression .. S wa:&;gw, t]

= Calculate RMSE using test and training data. \/OV\MS jve -
\%gg' CBXé?Z \Qk¥ S
y_test <- diamonds_test$price ////) ™ ééoj(a\

yhat_test <- predict(mod_train, newdata = diamonds_test) — \be
n_test <- length(diamonds_test$price) — r\

# test RMSE Ji
rmse <- sqrt(sum((y_test - yhat_test)”2) / n_test) ’//’(%1v/\5;

rmse

.@ J@m\w\w&é\
y_train <- diamonds_train$price &gzﬂCO\
yhat_train <- predict(mod_train, newdata = diamonds_train)

n_train <- length(diamonds_train$price)

# train RMSE
sqrt(sum( train - yhat_train)?2) / n_train)

e
## [1] 1547.391

;s Rmsk Ceonpured

W \Q
g\ CDA(\/S;V éﬂé\ \@\)* Clofe @3 4647
A0



Predicting the Price of Diamonds
using Multiple Linear Regression

We will add other variables to the regression model to investigate if we can
decrease the prediction error.

mrmod_train <- lm(price ~ carat + cut + y_test <- diamonds_testS$price
coler + clarity, yhat_test <- predict(mrmod_train,
data = diamonds_train) newdata = diamonds_test)
mrmod_train_summ <- summary(mrmod_train) n_test <- length(diamonds_test$price)
mrmod_train_summ$r.squared mr_rmse <-

sqrt(sum((y_test - yhat_test)”?2) / n_test)
- - # [1] 1149.881
o hple Vineas v Egrestion, @

o L sJurt @ Thesimpleli ion
DN C{ e “ W model ha@%
\fmdrboéiéls anCIE¥$ii:15 . ‘530%fé ol
C U Cals 0y = WMSE aee
= O‘\% &Ng . %iL \N\&\L\ NN o\g&mg Mot VariadeS.
C\ervy

s T Ao 085S 0T
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