
STA130H1F

Class #3

Prof. Nathan Taback

2018-24-09

1 / 32

Welcome back to STA130

!!

Today's class
Statistical data

2 / 32

Welcome back to STA130

!!

Today's class
Statistical data

Tidy data

2 / 32

Welcome back to STA130

!!

Today's class
Statistical data

Tidy data

Data wrangling

2 / 32

Welcome back to STA130

!!

Today's class
Statistical data

Tidy data

Data wrangling

Boxplots

2 / 32

Statistical data

3 / 32

What is statistical data?
Statistical data is obtained by observing (random) variables.

A random variable can be given a precise mathematical definition that
we will cover later in the course.

In this class we will discuss examples.

4 / 32

Observing a few variables on STA130
students

What is your height?

How many years have been at UofT?

What is your sex (male or female)?

Collecting this data will generate three variables: height, years, and
eye_colour.

5 / 32

Enter variables on STA130 students
height <- c()
years <- c()
eye_colour <- c()

Put the variables into an R data frame.

NB: data_frame is the tidyverse version of base R data.frame.

sta130_dat <- data_frame(height, years, eye_colour)

We could have entred this in a spreadsheet program like MS Excel, saved it
as a CSV file, then imported the file into R.

6 / 32

Tidy data
There are three interrelated rules which make a dataset tidy:

1. Each variable must have its own column.

2. Each observation must have its own row.

3. Each value must have its own cell.

7 / 32

Suppose that a first year class of 250 students has the following distribution of eye colour.

Colour N

Blue 105

Hazel 55

Green 75

Other 15

We can create a tidy data set with a categorical variable eye_col.

8 / 32

Suppose that a first year class of 250 students has the following distribution of eye colour.

Colour N

Blue 105

Hazel 55

Green 75

Other 15

We can create a tidy data set with a categorical variable eye_col.

library(tidyverse)
blue_eye <- rep("Blue", 105)
hazel_eye <- rep("Hazel", 55)
green_eye <- rep("Green", 75)
other_eye <- rep("Other", 15)
eye_col = c(blue_eye, hazel_eye,
 green_eye, other_eye)
eye_data <- data_frame(stnum = 1:250, eye_col)
glimpse(eye_data)

Observations: 250
Variables: 2
$ stnum <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,...
$ eye_col <chr> "Blue", "Blue", "Blue", "Blue", "Blue", "Blue", "Blue"...8 / 32

Tidy data
Which data set is tidy?

A tibble: 6 x 4
country year cases population
<chr> <int> <int> <int>
1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583

A tibble: 6 x 3
country year rate
* <chr> <int> <chr>
1 Afghanistan 1999 745/19987071
2 Afghanistan 2000 2666/20595360
3 Brazil 1999 37737/172006362
4 Brazil 2000 80488/174504898
5 China 1999 212258/1272915272
6 China 2000 213766/1280428583

9 / 32

Tidy data
"For a given dataset, it is usually easy to figure out what are
observations and what are variables, but it is surprisingly
di!icult to precisely define variables and observations in
general." (Wickham, 2014)

A general rule of thumb:

It is easier to describe functional relationships between variables (e.g.,
z is a linear combination of x and y, density is the ratio of weight to
volume) than between rows.

It is easier to make comparisons between groups of observations (e.g.,
average of group a vs. average of group b) than between groups of
columns.

(Wickham, 2014)

10 / 32

Data Wrangling

11 / 32

Data wrangling
The ggplot library implements a grammer of graphics.

Similarily the dplyr library presents a grammer for data wrangling.

12 / 32

The Economic Guide to Picking a
Major

"...A college degree is no guarantee of economic success. But
through their choice of major, they can take at least some steps
toward boosting their odds."

13 / 32

The Economic Guide to Picking a
Major

The data used in the article is from the American Community Survey
2010-2012 Public Use Microdata Series.

We can use the fivethirtyeight library in R.

14 / 32

Data behind the article
library(fivethirtyeight) # load the library
glimpse(college_recent_grads)

Observations: 173
Variables: 21
$ rank <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...
$ major_code <int> 2419, 2416, 2415, 2417, 2405, 2418...
$ major <chr> "Petroleum Engineering", "Mining A...
$ major_category <chr> "Engineering", "Engineering", "Eng...
$ total <int> 2339, 756, 856, 1258, 32260, 2573,...
$ sample_size <int> 36, 7, 3, 16, 289, 17, 51, 10, 102...
$ men <int> 2057, 679, 725, 1123, 21239, 2200,...
$ women <int> 282, 77, 131, 135, 11021, 373, 166...
$ sharewomen <dbl> 0.1205643, 0.1018519, 0.1530374, 0...
$ employed <int> 1976, 640, 648, 758, 25694, 1857, ...
$ employed_fulltime <int> 1849, 556, 558, 1069, 23170, 2038,...
$ employed_parttime <int> 270, 170, 133, 150, 5180, 264, 296...
$ employed_fulltime_yearround <int> 1207, 388, 340, 692, 16697, 1449, ...
$ unemployed <int> 37, 85, 16, 40, 1672, 400, 308, 33...
$ unemployment_rate <dbl> 0.018380527, 0.117241379, 0.024096...
$ p25th <dbl> 95000, 55000, 50000, 43000, 50000,...
$ median <dbl> 110000, 75000, 73000, 70000, 65000...
$ p75th <dbl> 125000, 90000, 105000, 80000, 7500...
$ college_jobs <int> 1534, 350, 456, 529, 18314, 1142, ...15 / 32

Select variables/columns using
select()
To retrieve a data frame with only major, number of male and female
graduates we use the select() function in the dplyr library.

select(college_recent_grads,major, men,women)

A tibble: 173 x 3
major men women
<chr> <int> <int>
1 Petroleum Engineering 2057 282
2 Mining And Mineral Engineering 679 77
3 Metallurgical Engineering 725 131
4 Naval Architecture And Marine Engineering 1123 135
5 Chemical Engineering 21239 11021
6 Nuclear Engineering 2200 373
7 Actuarial Science 2110 1667
8 Astronomy And Astrophysics 832 960
9 Mechanical Engineering 80320 10907
10 Electrical Engineering 65511 16016
... with 163 more rows

16 / 32

Select observations/rows using
filter()
If we want to retrieve only those observations (rows) that pertain to engineering majors then we need to

specify that the value of the major variable is Electrical Engineering.

== is a test for equality and is different than =.
EE <- filter(college_recent_grads,
 major == "Electrical Engineering")
glimpse(EE)

Observations: 1
Variables: 21
$ rank <int> 10
$ major_code <int> 2408
$ major <chr> "Electrical Engineering"
$ major_category <chr> "Engineering"
$ total <int> 81527
$ sample_size <int> 631
$ men <int> 65511
$ women <int> 16016
$ sharewomen <dbl> 0.1964503
$ employed <int> 61928
$ employed_fulltime <int> 55450

17 / 32

Combine select() and filter()
We can drill down to get certain pieces of information using filter()
and select() together.

The median variable is median salary.

select(filter(college_recent_grads, median <= 25000),
 major, men, women)

18 / 32

The pipe operator %>%
In the code:

select(filter(college_recent_grads, median >= 60000),
 major,men,women)

filter is nested inside select.

The pipe operator allows is an alternative to nesting and yields easier to
read code.

The same expression can be written with the pipe operator

college_recent_grads %>%
 filter(median >= 60000) %>%
 select(major, men, women)

19 / 32

Create new variables from existing
variables using mutate()
What percentage of graduates from each major where the median earnings
is at least $60,000 are men ?

college_recent_grads %>%
 filter(median >= 60000) %>%
 select(major, men, women) %>%
 mutate(total = men + women,
 pct_male = round((men / total)*100, 2))

Compare to nested code:

 mutate(select(filter(college_recent_grads,median >= 60000),
 major, men, women),
 total = men + women,
 pct_male = round((men / total)*100, 2))

20 / 32

Create new variables from existing
variables using mutate()
knitr::kable(college_recent_grads %>%
 filter(median >= 60000) %>%
 select(major, men, women) %>%
 mutate(total = men + women,
 pct_male = round((men / total)*100, 2)),
 format = "html")

major men women total pct_male

Petroleum Engineering 2057 282 2339 87.94

Mining And Mineral Engineering 679 77 756 89.81

Metallurgical Engineering 725 131 856 84.70

Naval Architecture And Marine
Engineering 1123 135 1258 89.27

Chemical Engineering 21239 11021 32260 65.84

Nuclear Engineering 2200 373 2573 85.50 21 / 32

Create new variables from existing
variables using mutate() and
ifelse()

Suppose that we would like to create a categorical variable to identify
majors with between 45% and 55% women (ie., approximately equal
numbers of males and females).

22 / 32

Create new variables from existing
variables using mutate() and
ifelse()

Suppose that we would like to create a categorical variable to identify
majors with between 45% and 55% women (ie., approximately equal
numbers of males and females).

We can use ifelse() in a mutate() statement.

The format of an ifelse() statement in R is:

ifelse(test, yes, no)

22 / 32

Create new variables from existing
variables using mutate() and
ifelse()

Suppose that we would like to create a categorical variable to identify
majors with between 45% and 55% women (ie., approximately equal
numbers of males and females).

We can use ifelse() in a mutate() statement.

The format of an ifelse() statement in R is:

ifelse(test, yes, no)

people <- c("Jamie", "Lei", "Francois", "Fanny")
ifelse(people == "Lei" | people == "Fanny", "Female", "Male")

[1] "Male" "Female" "Male" "Female"

22 / 32

college_recent_grads %>%
 select(major, men, women) %>%
 mutate(total = men + women,
 pct_female = round((women / total)*100, 2),
 sex.equal = ifelse(pct_female >= 45 & pct_female <= 55,
 "Yes","No")) %>%
 select(major,sex.equal)

A tibble: 173 x 2
major sex.equal
<chr> <chr>
1 Petroleum Engineering No
2 Mining And Mineral Engineering No
3 Metallurgical Engineering No
4 Naval Architecture And Marine Engineering No
5 Chemical Engineering No
6 Nuclear Engineering No
7 Actuarial Science No
8 Astronomy And Astrophysics Yes
9 Mechanical Engineering No
10 Electrical Engineering No
... with 163 more rows

23 / 32

Rename variables using rename()
It's considered bad practice in R to use periods in variable names.

We can use rename() to change the name of sex.equal to
sex_equal.

my_college_dat <- college_recent_grads %>%
 select(major, men, women, median) %>%
 mutate(total = men + women,
 pct_female = round((women / total)*100, 2),
 sex.equal = ifelse(pct_female >= 45 &
 pct_female <= 55, "Yes","No")) %>%
 select(major,sex.equal, median)

my_college_dat <- my_college_dat %>%
 rename(sex_equal = sex.equal, salary_median = median)
glimpse(my_college_dat)

Observations: 173
Variables: 3
$ major <chr> "Petroleum Engineering", "Mining And Mineral Eng...
$ sex_equal <chr> "No", "No", "No", "No", "No", "No", "No", "Yes",...
$ salary_median <dbl> 110000, 75000, 73000, 70000, 65000, 65000, 62000...

24 / 32

Sort a data frame using arrange()
my_college_dat %>%
 select(major, salary_median) %>%
 arrange(desc(salary_median))

A tibble: 173 x 2
major salary_median
<chr> <dbl>
1 Petroleum Engineering 110000
2 Mining And Mineral Engineering 75000
3 Metallurgical Engineering 73000
4 Naval Architecture And Marine Engineering 70000
5 Chemical Engineering 65000
6 Nuclear Engineering 65000
7 Actuarial Science 62000
8 Astronomy And Astrophysics 62000
9 Mechanical Engineering 60000
10 Electrical Engineering 60000
... with 163 more rows

25 / 32

Summarize a data frame using
summarize()
The average number of female grads and the total number of majors in the
data set.

college_recent_grads %>%
 select(major, men, women) %>%
 summarise(femgrad_mean = mean(women, na.rm = T), N = n())

A tibble: 1 x 2
femgrad_mean N
<dbl> <int>
1 22647. 173

26 / 32

Summarize groups in a data frame
using summarize() and
group_by()
The median salary in majors with 45%-55% female students.

my_college_dat %>%
 group_by(sex_equal) %>%
 summarise(median(salary_median))

A tibble: 3 x 2
sex_equal `median(salary_median)`
<chr> <dbl>
1 No 36000
2 Yes 37400
3 <NA> 53000

27 / 32

Boxplots to compare distribution of
salary in males versus females
my_college_dat %>% filter(is.na(sex_equal) == FALSE) %>%
 ggplot(aes(x = sex_equal, y = salary_median)) + geom_boxplot()

28 / 32

Anatomy of a Boxplot
A boxplot summarizes the distribution of a quantitative variable using five
statistics while plotting unusual observations (outliers).

29 / 32

Anatomy of a Boxplot
A boxplot summarizes the distribution of a quantitative variable using five
statistics while plotting unusual observations (outliers).

The five statistics are:

 percentile (first quartile)

Median = percentile

 percentile (third quartile)

lower whisker =

upper whisker =

NB: is called the inter-quartile range.

Q1 = 25th

50th

Q3 = 75th

Q1 − 1.5 × IQR

Q3+ 1.5 × IQR

IQR = Q3− Q1

29 / 32

Anatomy of a Boxplot
An outlier in is defined as any value of the quantitative variable that is
either:

less than or greater than .Q1 − 1.5 × IQR Q3+ 1.5 × IQR

30 / 32

Anatomy of a Boxplot
An outlier in is defined as any value of the quantitative variable that is
either:

less than or greater than .

The whiskers of the boxplot capture data outside the box, but not more
than .

Q1 − 1.5 × IQR Q3+ 1.5 × IQR

1.5 × IQR

30 / 32

x

[1] 0.14 0.15 0.15 0.44 0.54 0.76 0.96 1.18 1.23 2.89

quantile(x, 0.25)

25%
0.2225

quantile(x, 0.50)

50%
0.65

quantile(x, 0.75)

75%
1.125

quantile(x, 0.75) - quantile(x, 0.25) # IQR

75%
0.9025 31 / 32

The boxplot of the data ...

data_frame(x) %>%
 ggplot(aes(x = "", y = x)) +
 geom_boxplot()

32 / 32

