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Statistical data
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What is statistical data?
Statistical data is obtained by observing (random) variables.

A random variable can be given a precise mathematical definition that
we will cover later in the course.

In this class we will discuss examples.
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Observing a few variables on STA130
students

What is your height?

How many years have been at UofT?

What is your sex (male or female)?

Collecting this data will generate three variables: height, years, and
eye_colour.
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Enter variables on STA130 students
height <- c()
years <- c()
eye_colour <- c()

Put the variables into an R data frame.

NB: data_frame is the tidyverse version of base R data.frame.

sta130_dat <- data_frame(height, years, eye_colour)

We could have entred this in a spreadsheet program like MS Excel, saved it
as a CSV file, then imported the file into R.
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Tidy data
There are three interrelated rules which make a dataset tidy:

1. Each variable must have its own column.

2. Each observation must have its own row.

3. Each value must have its own cell.
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Suppose that a first year class of 250 students has the following distribution of eye colour.

Colour N

Blue 105

Hazel 55

Green 75

Other 15

We can create a tidy data set with a categorical variable eye_col.
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Suppose that a first year class of 250 students has the following distribution of eye colour.

Colour N

Blue 105

Hazel 55

Green 75

Other 15

We can create a tidy data set with a categorical variable eye_col.

library(tidyverse)
blue_eye <- rep("Blue", 105)
hazel_eye <- rep("Hazel", 55)
green_eye <- rep("Green", 75)
other_eye <- rep("Other", 15)
eye_col = c(blue_eye, hazel_eye, 
            green_eye, other_eye)
eye_data <- data_frame(stnum = 1:250, eye_col)
glimpse(eye_data)

## Observations: 250
## Variables: 2
## $ stnum   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,...
## $ eye_col <chr> "Blue", "Blue", "Blue", "Blue", "Blue", "Blue", "Blue"...8 / 32



Tidy data
Which data set is tidy?

## # A tibble: 6 x 4
##   country      year  cases population
##   <chr>       <int>  <int>      <int>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

## # A tibble: 6 x 3
##   country      year rate             
## * <chr>       <int> <chr>            
## 1 Afghanistan  1999 745/19987071     
## 2 Afghanistan  2000 2666/20595360    
## 3 Brazil       1999 37737/172006362  
## 4 Brazil       2000 80488/174504898  
## 5 China        1999 212258/1272915272
## 6 China        2000 213766/1280428583
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Tidy data
"For a given dataset, it is usually easy to figure out what are
observations and what are variables, but it is surprisingly
di!icult to precisely define variables and observations in
general." (Wickham, 2014)

A general rule of thumb:

It is easier to describe functional relationships between variables (e.g.,
z is a linear combination of x and y, density is the ratio of weight to
volume) than between rows.

It is easier to make comparisons between groups of observations (e.g.,
average of group a vs. average of group b) than between groups of
columns.

(Wickham, 2014)
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Data Wrangling
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Data wrangling
The ggplot library implements a grammer of graphics.

Similarily the dplyr library presents a grammer for data wrangling.
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The Economic Guide to Picking a
Major

"...A college degree is no guarantee of economic success. But
through their choice of major, they can take at least some steps
toward boosting their odds."
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The Economic Guide to Picking a
Major

The data used in the article is from the American Community Survey
2010-2012 Public Use Microdata Series.

We can use the fivethirtyeight library in R.
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Data behind the article
library(fivethirtyeight) # load the library
glimpse(college_recent_grads)

## Observations: 173
## Variables: 21
## $ rank                        <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...
## $ major_code                  <int> 2419, 2416, 2415, 2417, 2405, 2418...
## $ major                       <chr> "Petroleum Engineering", "Mining A...
## $ major_category              <chr> "Engineering", "Engineering", "Eng...
## $ total                       <int> 2339, 756, 856, 1258, 32260, 2573,...
## $ sample_size                 <int> 36, 7, 3, 16, 289, 17, 51, 10, 102...
## $ men                         <int> 2057, 679, 725, 1123, 21239, 2200,...
## $ women                       <int> 282, 77, 131, 135, 11021, 373, 166...
## $ sharewomen                  <dbl> 0.1205643, 0.1018519, 0.1530374, 0...
## $ employed                    <int> 1976, 640, 648, 758, 25694, 1857, ...
## $ employed_fulltime           <int> 1849, 556, 558, 1069, 23170, 2038,...
## $ employed_parttime           <int> 270, 170, 133, 150, 5180, 264, 296...
## $ employed_fulltime_yearround <int> 1207, 388, 340, 692, 16697, 1449, ...
## $ unemployed                  <int> 37, 85, 16, 40, 1672, 400, 308, 33...
## $ unemployment_rate           <dbl> 0.018380527, 0.117241379, 0.024096...
## $ p25th                       <dbl> 95000, 55000, 50000, 43000, 50000,...
## $ median                      <dbl> 110000, 75000, 73000, 70000, 65000...
## $ p75th                       <dbl> 125000, 90000, 105000, 80000, 7500...
## $ college_jobs                <int> 1534, 350, 456, 529, 18314, 1142, ...15 / 32



Select variables/columns using
select()
To retrieve a data frame with only major, number of male and female
graduates we use the select() function in the dplyr library.

select(college_recent_grads,major, men,women)

## # A tibble: 173 x 3
##    major                                       men women
##    <chr>                                     <int> <int>
##  1 Petroleum Engineering                      2057   282
##  2 Mining And Mineral Engineering              679    77
##  3 Metallurgical Engineering                   725   131
##  4 Naval Architecture And Marine Engineering  1123   135
##  5 Chemical Engineering                      21239 11021
##  6 Nuclear Engineering                        2200   373
##  7 Actuarial Science                          2110  1667
##  8 Astronomy And Astrophysics                  832   960
##  9 Mechanical Engineering                    80320 10907
## 10 Electrical Engineering                    65511 16016
## # ... with 163 more rows
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Select observations/rows using
filter()
If we want to retrieve only those observations (rows) that pertain to engineering majors then we need to

specify that the value of the major variable is Electrical Engineering.

# == is a test for equality and is different than =.
EE <- filter(college_recent_grads, 
             major == "Electrical Engineering")
glimpse(EE)

## Observations: 1
## Variables: 21
## $ rank                        <int> 10
## $ major_code                  <int> 2408
## $ major                       <chr> "Electrical Engineering"
## $ major_category              <chr> "Engineering"
## $ total                       <int> 81527
## $ sample_size                 <int> 631
## $ men                         <int> 65511
## $ women                       <int> 16016
## $ sharewomen                  <dbl> 0.1964503
## $ employed                    <int> 61928
## $ employed_fulltime           <int> 55450
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Combine select() and filter()
We can drill down to get certain pieces of information using filter()
and select() together.

The median variable is median salary.

select(filter(college_recent_grads, median <= 25000 ), 
       major, men, women)
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The pipe operator %>%
In the code:

select(filter(college_recent_grads, median >= 60000), 
       major,men,women)

filter is nested inside select.

The pipe operator allows is an alternative to nesting and yields easier to
read code.

The same expression can be written with the pipe operator

college_recent_grads %>% 
  filter(median >= 60000) %>% 
  select(major, men, women)
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Create new variables from existing
variables using mutate()
What percentage of graduates from each major where the median earnings
is at least $60,000 are men ?

college_recent_grads %>% 
  filter(median >= 60000) %>% 
  select(major, men, women) %>% 
  mutate(total = men + women, 
         pct_male = round((men / total)*100, 2))

Compare to nested code:

  mutate(select(filter(college_recent_grads,median >= 60000), 
                major, men, women), 
         total = men + women, 
         pct_male = round((men / total)*100, 2))
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Create new variables from existing
variables using mutate()
knitr::kable(college_recent_grads %>% 
  filter(median >= 60000) %>% 
  select(major, men, women) %>% 
  mutate(total = men + women, 
         pct_male = round((men / total)*100, 2)), 
  format = "html")

major men women total pct_male

Petroleum Engineering 2057 282 2339 87.94

Mining And Mineral Engineering 679 77 756 89.81

Metallurgical Engineering 725 131 856 84.70

Naval Architecture And Marine
Engineering 1123 135 1258 89.27

Chemical Engineering 21239 11021 32260 65.84

Nuclear Engineering 2200 373 2573 85.50 21 / 32



Create new variables from existing
variables using mutate() and
ifelse()

Suppose that we would like to create a categorical variable to identify
majors with between 45% and 55% women (ie., approximately equal
numbers of males and females).
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Create new variables from existing
variables using mutate() and
ifelse()

Suppose that we would like to create a categorical variable to identify
majors with between 45% and 55% women (ie., approximately equal
numbers of males and females).

We can use ifelse() in a mutate() statement.

The format of an ifelse() statement in R is:

ifelse(test, yes, no)

people <- c("Jamie", "Lei", "Francois", "Fanny")
ifelse(people == "Lei" | people == "Fanny", "Female", "Male")

## [1] "Male"   "Female" "Male"   "Female"
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college_recent_grads %>% 
  select(major, men, women) %>% 
  mutate(total = men + women, 
         pct_female = round((women / total)*100, 2), 
         sex.equal = ifelse(pct_female >= 45 & pct_female <= 55, 
                            "Yes","No")) %>%
  select(major,sex.equal)

## # A tibble: 173 x 2
##    major                                     sex.equal
##    <chr>                                     <chr>    
##  1 Petroleum Engineering                     No       
##  2 Mining And Mineral Engineering            No       
##  3 Metallurgical Engineering                 No       
##  4 Naval Architecture And Marine Engineering No       
##  5 Chemical Engineering                      No       
##  6 Nuclear Engineering                       No       
##  7 Actuarial Science                         No       
##  8 Astronomy And Astrophysics                Yes      
##  9 Mechanical Engineering                    No       
## 10 Electrical Engineering                    No       
## # ... with 163 more rows
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Rename variables using rename()
It's considered bad practice in R to use periods in variable names.

We can use rename() to change the name of sex.equal to
sex_equal.

my_college_dat <- college_recent_grads %>% 
  select(major, men, women, median) %>% 
  mutate(total = men + women, 
         pct_female = round((women / total)*100, 2), 
         sex.equal = ifelse(pct_female >= 45 & 
                              pct_female <= 55, "Yes","No")) %>%
  select(major,sex.equal, median)

my_college_dat <- my_college_dat %>% 
  rename(sex_equal = sex.equal, salary_median = median)
glimpse(my_college_dat)

## Observations: 173
## Variables: 3
## $ major         <chr> "Petroleum Engineering", "Mining And Mineral Eng...
## $ sex_equal     <chr> "No", "No", "No", "No", "No", "No", "No", "Yes",...
## $ salary_median <dbl> 110000, 75000, 73000, 70000, 65000, 65000, 62000...
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Sort a data frame using arrange()
my_college_dat %>% 
  select(major, salary_median) %>% 
  arrange(desc(salary_median))

## # A tibble: 173 x 2
##    major                                     salary_median
##    <chr>                                             <dbl>
##  1 Petroleum Engineering                            110000
##  2 Mining And Mineral Engineering                    75000
##  3 Metallurgical Engineering                         73000
##  4 Naval Architecture And Marine Engineering         70000
##  5 Chemical Engineering                              65000
##  6 Nuclear Engineering                               65000
##  7 Actuarial Science                                 62000
##  8 Astronomy And Astrophysics                        62000
##  9 Mechanical Engineering                            60000
## 10 Electrical Engineering                            60000
## # ... with 163 more rows
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Summarize a data frame using
summarize()
The average number of female grads and the total number of majors in the
data set.

college_recent_grads %>% 
  select(major, men, women) %>% 
  summarise(femgrad_mean = mean(women, na.rm = T), N = n())

## # A tibble: 1 x 2
##   femgrad_mean     N
##          <dbl> <int>
## 1       22647.   173

26 / 32



Summarize groups in a data frame
using summarize() and
group_by()
The median salary in majors with 45%-55% female students.

my_college_dat %>% 
  group_by(sex_equal) %>%
  summarise(median(salary_median))

## # A tibble: 3 x 2
##   sex_equal `median(salary_median)`
##   <chr>                       <dbl>
## 1 No                          36000
## 2 Yes                         37400
## 3 <NA>                        53000
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Boxplots to compare distribution of
salary in males versus females
my_college_dat %>% filter(is.na(sex_equal) == FALSE) %>%
  ggplot(aes(x = sex_equal, y = salary_median)) + geom_boxplot()
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Anatomy of a Boxplot
A boxplot summarizes the distribution of a quantitative variable using five
statistics while plotting unusual observations (outliers).
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Anatomy of a Boxplot
A boxplot summarizes the distribution of a quantitative variable using five
statistics while plotting unusual observations (outliers).

The five statistics are:

 percentile (first quartile)

Median =  percentile

 percentile (third quartile)

lower whisker = 

upper whisker = 

NB:  is called the inter-quartile range.

Q1 = 25th

50th

Q3 = 75th

Q1 − 1.5 × IQR

Q3+ 1.5 × IQR

IQR = Q3− Q1
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Anatomy of a Boxplot
An outlier in is defined as any value of the quantitative variable that is
either:

less than  or greater than .Q1 − 1.5 × IQR Q3+ 1.5 × IQR
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Anatomy of a Boxplot
An outlier in is defined as any value of the quantitative variable that is
either:

less than  or greater than .

The whiskers of the boxplot capture data outside the box, but not more
than .

Q1 − 1.5 × IQR Q3+ 1.5 × IQR

1.5 × IQR
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x

##  [1] 0.14 0.15 0.15 0.44 0.54 0.76 0.96 1.18 1.23 2.89

quantile(x, 0.25)

##    25% 
## 0.2225

quantile(x, 0.50)

##  50% 
## 0.65

quantile(x, 0.75)

##   75% 
## 1.125

quantile(x, 0.75) - quantile(x, 0.25) # IQR

##    75% 
## 0.9025 31 / 32



The boxplot of the data ...

data_frame(x) %>% 
  ggplot(aes(x = "", y = x)) + 
  geom_boxplot()
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