STA130H1F

Class #4
Prof. Nathan Taback

2018-01-10




Today's Class

Answering the question:
is something we observe in data meaningful, or could it simply be due
to chance?

Examples for:
= asingle proportion
Next week:
= extend to more situations

Recommended reading:

Sections 2.3.1, 2.3.2, 2.3.7 and 2.4 of Introductory Statistics with
Randomization and Simulation from Openlintro

(a free open-source textbook)
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Statistical Inference

= A statistical inference helps to make conclusions or decisions using
data.
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Statistical Inference

= A statistical inference helps to make conclusions or decisions using
data.

= An inferencein general is an uncertain conclusion.
= Two things mark out statistical inference:

= theinformation on which they are based is statistical (i.e., subject
to randomness);

m our conclusion is uncertain, and attempt to measure the
uncertainty involved.
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Experimental TB vaccine shows promi
mm g in clinical trials

By HELEN BRANSWELL @HelenBranswell / SEPTEMBER 28, 2018
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A child is given a new TB vaccine as part of a clinical trial in South Africa in 2011.
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s world leaders pledged support for the fight against tuberculosis at the
United Nations this week, some good news in the effort to develop
weapons to combat the bacterium nearly slipped under the radar.

An experimental TB vaccine showed solid protection in a clinical trial reported
Tuesday in the New England Journal of Medicine. The vaccine is being developed
by GSK and Aeras, a nonprofit organization working on affordable tuberculosis

vaccines.

The vaccine was tested in volunteers with latent tuberculosis — in other words,
people who had been infected, but who did not at the time of vaccination have
active TB disease. People who received placebo vaccine progressed from latent to
active disease at roughly twice the rate of people in the trial who received the

active vaccine. 4 / 45



Statistical Inference

Statistical inference can answer questions such as:

1. If more people buy the product after seeing two versions of the same
web page (A and B) is the difference due to chance or due to different
versions of the web page?
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Statistical Inference

Statistical inference can answer questions such as:

1. If more people buy the product after seeing two versions of the same
web page (A and B) is the difference due to chance or due to different

versions of the web page?

2. If less people who received the experimental TB vaccine are infected
with TB compared to people that didn't receive the vaccine is the
difference due to chance or due to receiving the vaccine?

Sometimes inference isn't appropriate. For example, if we have data for all
possible observations, there may be nothing to infer.
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Statistical Inference

Significance Testing C %é% o )jw RS /\(J%Wj

"If | calculate somethingin my data, say a difference between two groups or
a relationship between two variables or a value that is different than what
I'd expect then, could this be simply due to chance, or is it an actual real
difference or relationship?"
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Significance Testing for a
Single Proportion
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Kissing the Right Way

? )
U
m Gunturkiun (2003) recorded the

direction kissing couples tilted

their heads. L /

= Of the 124 couples he 5
observed, 80 turned their —

heads to the right. \L

= 64.5% of couples tilted their
heads to the right.

= |s this evidence of a right-side
preference?

What would you expect to see if
couples had no preference?

Rodin's sculpture The Kiss 8 /45



What would you expect to see if
couples had no preference?

= |norder to explore what we might expect to see if couples had no
preference for tilting their heads to the left or right when kissing, we'll
use simulation.
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What would you expect to see if
couples had no preference?

= |norder to explore what we might expect to see if couples had no
preference for tilting their heads to the left or right when kissing, we'll
use simulation.

= Randomly generate data that under the assumption that couples have
no preference (i.e. they are equally likely to tilt their heads to the left or
right.)

= We'll do this many times to see what values are possible under the
assumption of no preference.

What simple activity simulates an event that can occur one way or
another with equal probability?

Flppny a
CoV\/\-
9 /45



Flip a coin once
. D

sample(c("heads","tails"),
size = 1,
prob = c(0.5, 0.5))

## [1] "tails"

10/ 45



Flip a coin 124 times

The R code below simulates 124 flips of a coin or simulating 124 flips of a
coin.

# randomly generate 124 flips of a coin —- a "simulation"”
# probability is c(0.5, 0.5) by default

_flips <- 124

coin_flips <- sample(c("heads", "tails"),

replace = TRUE)

data.frame(coin_flips) %>% head() #result of first 6 flips

## coin_flips

#4 1 tails
#4 2 heads
## 3 heads
#4 4 tails
## 5 heads
## 6 heads

table(coin_flips) #counts number of heads and tails

__ C o NAF H;aﬂ&tjrj V\m/ék %U”Ull/%



Calculate the proportion of heads

Which of the 124 flips are heads?

coin_flips ==

##
##
##
##
##
##
##
##
##
##
##
##

[1]
[12]
[23]
[34]
[45]
[56]
[67]
[78]
[89]

[100]
[111]
[122]

FALSE
TRUE
TRUE

FALSE

FALSE

FALSE
TRUE

FALSE

FALSE

FALSE

FALSE
TRUE

"heads"

TRUE
FALSE
FALSE

TRUE

TRUE

TRUE

TRUE
FALSE

TRUE
FALSE

TRUE

TRUE

TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE
FALSE
TRUE
FALSE
FALSE

FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE

TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
FALSE
FALSE

TRUE
TRUE
TRUE
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE

TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE
TRUE

FALSE
FALSE
FALSE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE

FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

FALSE
TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE

FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE

12 /45



Calculate the proportion of heads

Count the number of heads (count how often flips == "heads" is TRUE).
sum(coin_flips == "heads")
## [1] 60

Calculate the proportion,of heads in the simulation.

O
p_heads <- sum(coin_flips == "heads") / n_flips L,/f
p_heads L /l‘

## [1] 0.483871
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Recall: how to reproduce
'randomness' in R?

= Simulations use functions in r that produce (apparently) random
outcomes (for example, sampte).
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Recall: how to reproduce
'randomness' in R?

= Simulations use functions in r that produce (apparently) random
outcomes (for example, sampte).

= We can force such a function to produce the same outcome every time
by setting a parameter called the "seed".

= The seed can be any integer.

= |'[l do that now, so that you can reproduce my results exactly with the
following command:

set.seed(130)

14 / 45



Simulate 124 head tilts when kissing,
assuming that left or right is equally
likely

Set the random seed to get the same answer every time

set.seed(130) — \F\&P \\L. (l\A/< [\QS 2 \%S

n_observations <- 124

Create an empty vector to store the results to store 1000 results, initially it's filled with missing values

(NAs).
simulated_stats <- rep(NA, 1000) \,, A( \ \ S '
sim <- sample(c("right", "left"), S : N, \O\A"Q\ ®
) > . AR
size = n_observations,
replace = TRUE)

s1:m_p <- sum(sim == "right") / n_observations F(’ o 5”& C‘S‘IVD\{J a\//\/\
sim_p )(\J v \3 \/\/AK_
## [1] 0.443548

1 44544/_ S_l\v,_”\%\feﬂ_v\/—.

simulated_stats[1] <- sim_p

The last line adds the new simulated value to the first entry in the vector of results.
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Turn results into a data frame.
siml <- data_frame(p_right = simulated_stats)
Plot using ggplot

siml %>% ggplot(aes(x=p_right)) +
geom_dotplot() +
xlim(0.3, 0.7) +
ylim(0, 10)

10.0 -

7.5-
5
3 50-
(@]

25-

®

0.3 0.4 0.5
p_right

s PP

0.6

0.7
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Add another simulation

## [1] 0.5080645

10.0 -
7.5-
E
3 °0-
(&]
25-
0o- 0
0.00 0.25 0.50 0.75 1.00

p_right
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And another simulation

## [1] 0.4435484

10.0 -
7.5-
E
3 °0-
(&]
25-
0o- 8 ®
0.00 0.25 0.50 0.75 1.00

p_right
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for lOOpS

= Automate the process of generating many simulations
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for lOoOpsS
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= The following for loop will evaluate SOME CODE 1000 times, for i=1 and
i=2 and ... and i=1000
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for lOoOpsS

= Automate the process of generating many simulations
= Evaluate a block of code for each value of a sequence

= The following for loop will evaluate SOME CODE 1000 times, for i=1 and
i=2 and ... and i=1000

= Note that SOME CODE is within curly brackets

for (i in 1:1000)
{
SOME CODE

}

\GJLW %\RQC\I\\PK{ (@@gjﬁw/
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Set values for simulation.

;Etngbservations <- 124 # number of obeservations
repetitions <- 1000 # 1000 simulations
simulated_stats <- rep(NA, repetitions) # 1000 missing values
set.seed(101)

Automate simulation with a for loop and turn results into a data frame.

for (i in l:repetitions)

{ E
new_sim <- sample(c("right", "left"), S
size = n_observations,
replace = TRUE)

////7?;ﬁm_p <- sum(new_sim == "right") / n_observations (:-/ S <§K~ <i_
# add the new simulated value to the 1ith entry

# 1n the vector of results
simulated_stats[i] <- sim_p

¥ ' /J—U/
sim <- data_fra;;zB:F;QE;’:—;;;;{;;;;:;;;E§7\ ‘5; ANMNAL l f\\ \/\éz/(’

Calcvlnde proporhen P A= I
g 5 L g e

WA

>
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Plot results

sim %>% ggplot(aes(x = p_right)) +
geom_histogram(binwidth = 0.02, colour = "black", fill = "grey")

200 -

150 -

count

r——

{ I—
0_
0.4 0.5 0.6

p_right
Q\\S*ﬁ'\\o\rh"“\r% \;“\“P‘rﬁﬁmé /\féc\f“/\v\ty
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How unusual is a value of 0.645, if

tilting to the right or left is equally
likely?

sim %>% ggplot(aes(p_right)) +

geom_histogram(binwidth = 0.02, colour = "black", fill = "grey") +
geom_vline(xintercept = 0.645, color = "red") +
geom_vline(xintercept = 0.355, color = "blue") +
labs(x = "Simulated values of proportion who kiss right")

T
A%
(o~
. 150
c
>
8 100
50
0 - _I_I
0.4 0.5 0.
Simulated values of proportion who kiss right
|\f v jr \/' e
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How unusual is a value of 0.645, if
tilting to the right or left is equally
likely?

This includes values that are as well as values that are since
0.355is as far from 0.5 as 0.645.

Calculate the proportion of our simulated observations that are as
unusual or more unusual than 0.645:




How unusual is a value of 0.645, if
tilting to the right or left is equally
likely?

This includes values that are as well as values that are since
0.355 s as far from 0.5 as 0.645.

Calculate the proportion of our simulated observations that are as
unusual or more unusual than 0.645:

Tt Cavwﬂ %//OQC

In R,theverthcalb r meaﬁ;e& S
— ol %

sim %>%

filter(p_right >= 0.6456 | p_right <= 0.355) %>%

summarise(p_value = n() / repetitions)

## # A tibble: 1Kx—1/\
## p_value KEE) . (D’{;;//
i <dbl> % O\

#% 1 0.001 ~ H KJJUM\D &VS
e B



The Logic of Hypothesis
Testing
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1. The hypotheses

Two claims:

1. Couples are equally likely to tilt to the right or left. This is the null
hypothesis, written A . The proportion who kiss to the right is one-half.

HOP - O g
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1. The hypotheses

Two claims:

1.

Couples are equally likely to tilt to the right or left. This is the null
hypothesis, written A . The proportion who kiss to the right is one-half.

Hup: GUE

. Couples are more likely to prefer one side. This is the alternative

hypothesis, written 1, (or H, or H.).
For the kissing example, if there is something going on, the proportion
who kiss to the right should be something other than one-half.

mr .S
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2. Parameters, Statistics, Test

Statistics

A parameter: "true" value of what
we're interested in, typically,
because it's what holds for the
population.

A statistic is a number that
describes the sample. The value of
a statistic will changes from sample
to sample.

A test statistic measures the
compatiability between null
hypothesis and the data.

- . 645

In the kissing example:

Parameter: p: the true proportion
of people who kiss to the right

Statistic: p: the proportion of
people who kiss to the right. The
value of a statistic can be different
from sample to sample.

The test statistic is a number,
calculated from the data. For the
Kissing exa IT/IQIG, the test statistic

we'll useisp s, @ U/j
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3. Simulate what the null hypothesis
predicts will happen

The distribution of the statistic is the pattern of values it could be,
including an indication of how likely those values are to occur.
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3. Simulate what the null hypothesis
predicts will happen

The distribution of the statistic is the pattern of values it could be,
including an indication of how likely those values are to occur.

A simulation is a way to explore random events, such as what some data or
a test statistic could look like under certain assumptions. By observing
many simulated outcomes, we can see what values are possible and the
distribution of these possible values.

We want to know the distribution of what the test statistic could be if the
null hypothesis were true.

To get an estimate of this, simulate many possible values of the statistic
under the assumption that the null hypothesis is true.



4. The P-value

= Assuming that the null hypothesis is true, the P-value is the probability
of observing data that are at least as unusual as the sample data.

2
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4. The P-value

= Assuming that the null hypothesis is true, the P-value is the probability
of observing data that are at least as unusual as the sample data.

= We estimate the P-value as the proportion of observations in the
empirical distribution that yield a statistic as extreme or more extreme
than the test statistic calculated from our data.
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4. The P-value

m \What does "as extreme or more extreme" mean?
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value. \J(§ - EC ~ g
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m \What does "as extreme or more extreme" mean?

= Values that are as far away or even farther from the null hypothesis
value.

For the kissing example:

= the null hypothesisvalue:p —__ O> - 5
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4. The P-value

m \What does "as extreme or more extreme" mean?

= Values that are as far away or even farther from the null hypothesis
value.

For the kissing example:
= the null hypothesis value: p
= the observed estimate from the data: p

= values at least as unusual as the data values: all values greater than or
equal to 0.645 and all values less than or equal to 0.355
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4. The P-value

m What does "as extreme or more extreme" mean?

= Values that are as far away or even farther from the null hypothesis
value.

For the kissing example:
= the null hypothesis value: p
= the observed estimate from the data: p

= values at least as unusual as the data values: all values greater than or
equal to 0.645 and all values less than or equal to 0.355

= Thisis a two-sided test because it considers differences from the null
hypothesis that are both larger and smaller than what you observed.
(Itis also possible to carry out one-sided tests. They are useful in some
specific applications.)
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5. Make a conclusion

= P-values are probabilities so are between 0 and 1. Small probabilities
correspond to events that are unlikely to happen and large values
correspond to events that are likely to happen.
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5. Make a conclusion

= P-values are probabilities so are between 0 and 1. Small probabilities
correspond to events that are unlikely to happen and large values
correspond to events that are likely to happen.

= Alarge P-value means the data are consistent with the null hypothesis.

= A small P-value means the data are inconsistent with the null
hypothesis. A statistically significant result is associated with a small
P-value.
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5. Make a conclusion

Some guidelines for how small is small:

P-value
p-value>0.10
0.05 < p-value<0.10
0.01 < p-value<0.05
0.001 < p-value <0.01
p-value <0.001

Evidence
no evidence against H
weak evidence against #
moderate evidence against &
strong evidence against #

very strong evidence against H
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Simulation results and P-value for
kissing ex.

200 -

0.4 0.5 0.6
Simulated values of proportion who kiss right

## # A tibble: 1 x 1
# p_value
## <dbl>
## 1 0.001
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Conclusion for the Kissing Example

Since the P-value is 0.001 we conclude that we have we have strong
evidence against the null hypothesis. The data provide convincing evidence
that people are more likely to tilt their heads to one direction when they

kiss.
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Another example: Is a coin biased?

via GIPHY

= |n 1986, mathematician Joseph
Keller, now an emeritus
professor at Stanford, proved
that one fair way to toss a coin
is to throw it so that it spins
perfectly around a horizontal
axis through the coin's center.

= Such a perfect toss would
require superhuman precision.

Every other possible toss is
biased, according to an
analysis described on Feb. 14
in Seattle at the annual
meeting of the American
Association for the
Advancement of Science.

A researcher tossed an
American quarter 2000 times
and obtained 1123 heads. Is
this evidence that the coin is
biased?
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Steps to testing whether the data are
consistent with a biased coin

1. Formulate null and alternative hypotheses.
2. Calculate a test statistic from the data.

3. Simulate many values of what the test statistic could possibly have
been if the null hypothesis were true.

4. Calculate the P-value.

5. Make a conclusion.
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What would be appropriate null and
alternative hypotheses to test if the
coin is biased?

% PEos

Hy: ? 1o 5
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What would be an appropriate test
statistics?

The data: The researcher flipped the coin 2000 times and obtained 1123
heads.
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Simulate many values of what we'd
observe if the null hypothesis were
true

Here is the code for the kissing example. What values do we need to
change?

repetitions <- 1000
simulated_stats <- rep(NA, repetitions) # 1000 missing values

n_observations <- ;24//’]_‘25 > ©
test_stat <- 807324 _ VAL //’245f>é;'6

set.seed(101)

for (i in l:repetitions). ' \ \ .

new_sim <- sample(c("rjght", "1 ",
size=n_observations,
replace=TRUE)
sim_p <- sum(new_sim == "F?Ehtl) / n_observations
. 1 e ed
} simulated _stats[i] sim_p \ V\—@.wyﬁl S [/

38 /45



Here is more code for the kissing example. What values do we need to
change?

sim <- data_frame(p_right = simulated_stats) \ \'Nl;:; //é\_;£> ES-C>

ggplot(sim, aes(p_right)) +

geom_histogram(binwidth=0.02, /colour = "black", fill = "grey") +

geom_vline(xintercept = 0 , color="red") +
geom_vline(xintercept 0.355, color="blue")

sim %>% ‘
filter(p_right >= q,gﬁé p_right <= 9}365 %> (i) ‘E; — <: E7\VEE;\ —

70

summarise(p_value = n() / repetitions)

[ LL}/LS 3O
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Results for biased coin example

set.seed(130)
repetitions <- 1000
simulated_stats <- rep(NA, repetitions) # 1000 missing values

n_observations <- 2000

test_stat <- 1123/2000
other_extreme <- 0.5 - (1123/2000 - 0.5)

set.seed(101)
for (i in l:repetitions)

{ | | l

new_s-im <— Sample(c("heads", "ta‘ils"), Q_/% p\ \ C (, 4[' \9\
" - n_ob o , B
N

replace = TRUE)
sim_p <- sum(new_sim == "heads") / n_observations

simulated_stats[i] <- sim_p

Sopprsc Hoy P =055
Eréh = <Q@,3r€\€%9\§>
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sim <- data_frame(p_heads

simulated_stats)

ggplot(sim, aes(p_heads))

-+

geom_histogram(binwidth = 0.01, colour = "black", fill = "grey") +
geom_vline(xintercept = test_stat, color = "red") +

geom_vline(xintercept = other_extreme, color = "blue")

300 -
+ 200 -
>
(@]
(&)

100 -

0 - I
0.44 0.48 0.52 0.56
p_heads



S-|m /70
filte (p heads >= test_stat | ads <= other_extreme) %>%
se(p_valu n() / r ns)

## # A tibble: 1 x 1
# p_value
#it <dbl>
## 1 0]

S jﬁ\uwc LM G
%\m& (s 1 L) b(é\&é\z
P N = 0,0

/{ S. N2 EJWMQ

Q\f\bkw\% @Bamf%‘
CRNAN



Conclusion

The researcher observed I\@r@bserved 1123 heads in 2000 coin tosses,
a proportion of 0.5615.

Assuming the probability of head is 0.50, the probability of observing a
proportion that differs from 0.50 as much or more than 0.5615is 0.0.
Therefore we have strong evidence that the coin is biased.

43 /45



How many simulations is enough?

= |nour examples, we've looked at 1000 simulated values assuming the
null hypothesis is true, to compare to the value of our test statistic.

= |n practice, the number of simulations is more typically on the order of
10,000.

= But that can take a long time to run.

44 | 45



A mathematical note

[Not responsible for on test and exam.]

= You could determine the P-value exactly using a binomial probability
model.

= A binomial probability model is used to count the number of
"successes" in nindependent trials, where each trial has two possible
outcomes: "success" with probability p or "failure" with probability

D .
= The probability of k successes in » trials is

nkpk pnk

You'll study binomial probability models in second year statistics courses.

45 [/ 45



