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Today's Class
Answering the question:
is something we observe in data meaningful, or could it simply be due
to chance?

Examples for:

a single proportion

Next week:

extend to more situations

Recommended reading:
Sections 2.3.1, 2.3.2, 2.3.7 and 2.4 of Introductory Statistics with
Randomization and Simulation from OpenIntro
(a free open-source textbook)
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Statistical Inference
A statistical inference helps to make conclusions or decisions using
data.
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Statistical Inference
A statistical inference helps to make conclusions or decisions using
data.

An inference in general is an uncertain conclusion.

Two things mark out statistical inference:

the information on which they are based is statistical (i.e., subject
to randomness);

our conclusion is uncertain, and attempt to measure the
uncertainty involved.
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Statistical Inference
Statistical inference can answer questions such as:

1. If more people buy the product a!er seeing two versions of the same
web page (A and B) is the di"erence due to chance or due to di"erent
versions of the web page?
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Statistical Inference
Statistical inference can answer questions such as:

1. If more people buy the product a!er seeing two versions of the same
web page (A and B) is the di"erence due to chance or due to di"erent
versions of the web page?

2. If less people who received the experimental TB vaccine are infected
with TB compared to people that didn't receive the vaccine is the
di"erence due to chance or due to receiving the vaccine?

Sometimes inference isn't appropriate. For example, if we have data for all
possible observations, there may be nothing to infer.
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Statistical Inference
Significance Testing

"If I calculate something in my data, say a di"erence between two groups or
a relationship between two variables or a value that is di"erent than what
I'd expect then, could this be simply due to chance, or is it an actual real
di"erence or relationship?"
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Significance Testing for a
Single Proportion
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Rodin's sculpture The Kiss

Güntürkün (2003) recorded the
direction kissing couples tilted
their heads.

Of the 124 couples he
observed, 80 turned their
heads to the right.

64.5% of couples tilted their
heads to the right.

Is this evidence of a right-side
preference?

What would you expect to see if
couples had no preference?

Kissing the Right Way
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What would you expect to see if
couples had no preference?

In order to explore what we might expect to see if couples had no
preference for tilting their heads to the le! or right when kissing, we'll
use simulation.
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What would you expect to see if
couples had no preference?

In order to explore what we might expect to see if couples had no
preference for tilting their heads to the le! or right when kissing, we'll
use simulation.

Randomly generate data that under the assumption that couples have
no preference (i.e. they are equally likely to tilt their heads to the le! or
right.)

We'll do this many times to see what values are possible under the
assumption of no preference.

What simple activity simulates an event that can occur one way or
another with equal probability?
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Flip a coin once
sample(c("heads","tails"), 
       size = 1, 
       prob = c(0.5, 0.5))

## [1] "tails"
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Flip a coin 124 times
The R code below simulates 124 flips of a coin or simulating 124 flips of a
coin.

# randomly generate 124 flips of a coin -- a "simulation"
# probability is c(0.5, 0.5) by default
n_flips <- 124
coin_flips <- sample(c("heads", "tails"), 
                size = n_flips, 
                replace = TRUE)

data.frame(coin_flips) %>% head() #result of first 6 flips

##   coin_flips
## 1      tails
## 2      heads
## 3      heads
## 4      tails
## 5      heads
## 6      heads

table(coin_flips) #counts number of heads and tails
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Calculate the proportion of heads
Which of the 124 flips are heads?

coin_flips == "heads"

##   [1] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [12]  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
##  [23]  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
##  [34] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
##  [45] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
##  [56] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
##  [67]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [78] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [89] FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE
## [100] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [111] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
## [122]  TRUE  TRUE FALSE
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Calculate the proportion of heads
Count the number of heads (count how o!en flips == "heads" is TRUE).

sum(coin_flips == "heads")

## [1] 60

Calculate the proportion of heads in the simulation.

p_heads <- sum(coin_flips == "heads") / n_flips
p_heads

## [1] 0.483871
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Recall: how to reproduce
'randomness' in R?

Simulations use functions in R that produce (apparently) random
outcomes (for example, sample).
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Recall: how to reproduce
'randomness' in R?

Simulations use functions in R that produce (apparently) random
outcomes (for example, sample).

We can force such a function to produce the same outcome every time
by setting a parameter called the "seed".

The seed can be any integer.

I'll do that now, so that you can reproduce my results exactly with the
following command:

set.seed(130)
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Simulate 124 head tilts when kissing,
assuming that le! or right is equally
likely
Set the random seed to get the same answer every time

set.seed(130) 
n_observations <- 124

Create an empty vector to store the results to store 1000 results, initially it's filled with missing values
(NAs).

simulated_stats <- rep(NA, 1000)
sim <- sample(c("right", "left"), 
              size = n_observations, 
              replace = TRUE)
sim_p <- sum(sim == "right") / n_observations
sim_p

## [1] 0.4435484

simulated_stats[1] <- sim_p

The last line adds the new simulated value to the first entry in the vector of results.
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Turn results into a data frame.

sim1 <- data_frame(p_right = simulated_stats)

Plot using ggplot

sim1 %>% ggplot(aes(x=p_right)) + 
  geom_dotplot() + 
  xlim(0.3, 0.7) + 
  ylim(0, 10)
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Add another simulation
## [1] 0.5080645
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And another simulation
## [1] 0.4435484
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for loops
Automate the process of generating many simulations
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for loops
Automate the process of generating many simulations

Evaluate a block of code for each value of a sequence

The following for loop will evaluate SOME CODE 1000 times, for i=1 and
i=2 and ... and i=1000

Note that SOME CODE is within curly brackets

for (i in 1:1000)
{
  SOME CODE
}
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Set values for simulation.

n_observations <- 124 # number of obeservations
repetitions <- 1000 # 1000 simulations
simulated_stats <- rep(NA, repetitions) # 1000 missing values
set.seed(101)

Automate simulation with a for loop and turn results into a data frame.

for (i in 1:repetitions)
{
  new_sim <- sample(c("right", "left"), 
                    size = n_observations, 
                    replace = TRUE)
  sim_p <- sum(new_sim == "right") / n_observations
  # add the new simulated value to the ith entry 
  # in the vector of results
  simulated_stats[i] <- sim_p
}
sim <- data_frame(p_right = simulated_stats)
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Plot results

sim %>% ggplot(aes(x = p_right)) + 
  geom_histogram(binwidth = 0.02, colour = "black", fill = "grey")
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How unusual is a value of 0.645, if
tilting to the right or le! is equally
likely?
sim %>% ggplot(aes(p_right)) + 
  geom_histogram(binwidth = 0.02, colour = "black", fill = "grey") +
  geom_vline(xintercept = 0.645, color = "red") + 
  geom_vline(xintercept = 0.355, color = "blue") +
  labs(x = "Simulated values of proportion who kiss right")
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How unusual is a value of 0.645, if
tilting to the right or le! is equally
likely?
This includes values that are  as well as values that are  since
0.355 is as far from 0.5 as 0.645.

Calculate the proportion of our simulated observations that are as
unusual or more unusual than 0.645:
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How unusual is a value of 0.645, if
tilting to the right or le! is equally
likely?
This includes values that are  as well as values that are  since
0.355 is as far from 0.5 as 0.645.

Calculate the proportion of our simulated observations that are as
unusual or more unusual than 0.645:

In R, the vertical bar | means or.

sim %>% 
filter(p_right >= 0.645 | p_right <= 0.355) %>%
summarise(p_value = n() / repetitions)

## # A tibble: 1 x 1
##   p_value
##     <dbl>
## 1   0.001
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The Logic of Hypothesis
Testing
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1. The hypotheses
Two claims:

1. Couples are equally likely to tilt to the right or le!. This is the null
hypothesis, written . The proportion who kiss to the right is one-half.H

H p

25 / 45

o
= o . 5



1. The hypotheses
Two claims:

1. Couples are equally likely to tilt to the right or le!. This is the null
hypothesis, written . The proportion who kiss to the right is one-half.

2. Couples are more likely to prefer one side. This is the alternative
hypothesis, written  (or  or ).
For the kissing example, if there is something going on, the proportion
who kiss to the right should be something other than one-half.

H

H p

HA Ha H

HA p
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A parameter: "true" value of what
we're interested in, typically,
because it's what holds for the
population.

A statistic is a number that
describes the sample. The value of
a statistic will changes from sample
to sample.

A test statistic measures the
compatiability between null
hypothesis and the data.

In the kissing example:

Parameter: : the true proportion
of people who kiss to the right

Statistic: : the proportion of
people who kiss to the right. The
value of a statistic can be di"erent
from sample to sample.

The test statistic is a number,
calculated from the data. For the
kissing example, the test statistic
we'll use is 

2. Parameters, Statistics, Test
Statistics

p

p

p

26 / 45

n

ph = on . 645
^

= 0.645



3. Simulate what the null hypothesis
predicts will happen
The distribution of the statistic is the pattern of values it could be,
including an indication of how likely those values are to occur.
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3. Simulate what the null hypothesis
predicts will happen
The distribution of the statistic is the pattern of values it could be,
including an indication of how likely those values are to occur.

A simulation is a way to explore random events, such as what some data or
a test statistic could look like under certain assumptions. By observing
many simulated outcomes, we can see what values are possible and the
distribution of these possible values.

We want to know the distribution of what the test statistic could be if the
null hypothesis were true.

To get an estimate of this, simulate many possible values of the statistic
under the assumption that the null hypothesis is true.

This is the empirical distribution of the test statistic under the null
hypothesis.
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4. The P-value
Assuming that the null hypothesis is true, the P-value is the probability
of observing data that are at least as unusual as the sample data.

28 / 45
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4. The P-value
Assuming that the null hypothesis is true, the P-value is the probability
of observing data that are at least as unusual as the sample data.

We estimate the P-value as the proportion of observations in the
empirical distribution that yield a statistic as extreme or more extreme
than the test statistic calculated from our data.
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4. The P-value
What does "as extreme or more extreme" mean?
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4. The P-value
What does "as extreme or more extreme" mean?

Values that are as far away or even farther from the null hypothesis
value.

For the kissing example:

the null hypothesis value: 

the observed estimate from the data: 

values at least as unusual as the data values: all values greater than or
equal to 0.645 and all values less than or equal to 0.355
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4. The P-value
What does "as extreme or more extreme" mean?

Values that are as far away or even farther from the null hypothesis
value.

For the kissing example:

the null hypothesis value: 

the observed estimate from the data: 

values at least as unusual as the data values: all values greater than or
equal to 0.645 and all values less than or equal to 0.355

This is a two-sided test because it considers di"erences from the null
hypothesis that are both larger and smaller than what you observed.
(It is also possible to carry out one-sided tests. They are useful in some
specific applications.)

p

p
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5. Make a conclusion
P-values are probabilities so are between 0 and 1. Small probabilities
correspond to events that are unlikely to happen and large values
correspond to events that are likely to happen.

30 / 45



5. Make a conclusion
P-values are probabilities so are between 0 and 1. Small probabilities
correspond to events that are unlikely to happen and large values
correspond to events that are likely to happen.

A large P-value means the data are consistent with the null hypothesis.

30 / 45



5. Make a conclusion
P-values are probabilities so are between 0 and 1. Small probabilities
correspond to events that are unlikely to happen and large values
correspond to events that are likely to happen.

A large P-value means the data are consistent with the null hypothesis.

A small P-value means the data are inconsistent with the null
hypothesis. A statistically significant result is associated with a small
P-value.

30 / 45



5. Make a conclusion
Some guidelines for how small is small:

P-value Evidence

p-value > 0.10 no evidence against 

0.05 < p-value < 0.10 weak evidence against 

0.01 < p-value < 0.05 moderate evidence against 

0.001 < p-value < 0.01 strong evidence against 

p-value < 0.001 very strong evidence against 

H

H

H

H

H
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Simulation results and P-value for
kissing ex.

## # A tibble: 1 x 1
##   p_value
##     <dbl>
## 1   0.001
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Conclusion for the Kissing Example
Since the P-value is 0.001 we conclude that we have we have strong
evidence against the null hypothesis. The data provide convincing evidence
that people are more likely to tilt their heads to one direction when they
kiss.
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via GIPHY

In 1986, mathematician Joseph
Keller, now an emeritus
professor at Stanford, proved
that one fair way to toss a coin
is to throw it so that it spins
perfectly around a horizontal
axis through the coin's center.

Such a perfect toss would
require superhuman precision.
Every other possible toss is
biased, according to an
analysis described on Feb. 14
in Seattle at the annual
meeting of the American
Association for the
Advancement of Science.

A researcher tossed an
American quarter 2000 times
and obtained 1123 heads. Is
this evidence that the coin is
biased?

Another example: Is a coin biased?

34 / 45



Steps to testing whether the data are
consistent with a biased coin
1. Formulate null and alternative hypotheses.

2. Calculate a test statistic from the data.

3. Simulate many values of what the test statistic could possibly have
been if the null hypothesis were true.

4. Calculate the P-value.

5. Make a conclusion.
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What would be appropriate null and
alternative hypotheses to test if the
coin is biased?

:

:

H

HA
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What would be an appropriate test
statistics?
The data: The researcher flipped the coin 2000 times and obtained 1123
heads.
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Simulate many values of what we'd
observe if the null hypothesis were
true
Here is the code for the kissing example. What values do we need to
change?

repetitions <- 1000
simulated_stats <- rep(NA, repetitions) # 1000 missing values

n_observations <- 124

test_stat <- 80/124

set.seed(101)
for (i in 1:repetitions)
{
  new_sim <- sample(c("right", "left"), 
                    size=n_observations, 
                    replace=TRUE)
  sim_p <- sum(new_sim == "right") / n_observations
  simulated_stats[i] <- sim_p
}
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Here is more code for the kissing example. What values do we need to
change?

sim <- data_frame(p_right = simulated_stats)

ggplot(sim, aes(p_right)) + 
geom_histogram(binwidth=0.02, colour = "black", fill = "grey") +
geom_vline(xintercept = 0.645, color="red") +
  geom_vline(xintercept = 0.355, color="blue") 

sim %>% 
filter(p_right >= 0.645 | p_right <= 0.355) %>%
summarise(p_value = n() / repetitions)
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Results for biased coin example
set.seed(130) 
repetitions <- 1000
simulated_stats <- rep(NA, repetitions) # 1000 missing values

n_observations <- 2000

test_stat <- 1123/2000
other_extreme <- 0.5 - (1123/2000 - 0.5)

set.seed(101)
for (i in 1:repetitions)
{
  new_sim <- sample(c("heads", "tails"), 
                    size = n_observations,
                    prob = c(0.5,0.5), 
                    replace = TRUE)
  sim_p <- sum(new_sim == "heads") / n_observations
  simulated_stats[i] <- sim_p
}
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sim <- data_frame(p_heads = simulated_stats)

ggplot(sim, aes(p_heads)) + 
geom_histogram(binwidth = 0.01, colour = "black", fill = "grey") +
geom_vline(xintercept = test_stat, color = "red") +
  geom_vline(xintercept = other_extreme, color = "blue")
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sim %>% 
filter(p_heads >= test_stat | p_heads <= other_extreme) %>%
summarise(p_value = n() / repetitions)

## # A tibble: 1 x 1
##   p_value
##     <dbl>
## 1       0
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Conclusion
The researcher observed Mendel observed 1123 heads in 2000 coin tosses,
a proportion of 0.5615.

Assuming the probability of head is 0.50, the probability of observing a
proportion that di"ers from 0.50 as much or more than 0.5615 is 0.0.
Therefore we have strong evidence that the coin is biased.
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How many simulations is enough?
In our examples, we've looked at 1000 simulated values assuming the
null hypothesis is true, to compare to the value of our test statistic.

In practice, the number of simulations is more typically on the order of
10,000.

But that can take a long time to run.
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A mathematical note
[Not responsible for on test and exam.]

You could determine the P-value exactly using a binomial probability
model.

A binomial probability model is used to count the number of
"successes" in  independent trials, where each trial has two possible
outcomes: "success" with probability  or "failure" with probability 

.

The probability of  successes in  trials is

You'll study binomial probability models in second year statistics courses.

n

p

p

k n

n k pk p n k
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