STA130H1F

Class \#7

Prof. Nathan Taback

2018-10-21

Purpose of today's class

- Review some material and ideas for the test.
- Not 100\% comprehensive.
- What else should you study?
- All lecture slides, weekly practice problems.

Structure of test

The test is a combination of:

- multiple choice
- fill in the blanks
- short answer (explain why / apply)
- answers that require you to write some sentences

Lightning Round

$M_{1}=$ mean reduction in tumour size
for new treatment, $\mu_{2}={ }_{l}$ " for oldest. $H_{0}: M_{1}=\mu_{2}$ Lightning Round Question $1 \quad H_{A}=\mu_{1} \neq \mu_{2}$

A clinical oncologist is investigating the efficacy of a new treatment on reduction in tumour size. She randomly assigns patients to the new treatment or old treatment and compares the mean of the reduction in tumour size between the two groups. She carries out a statistical test and the P-value is 0.001 . How many of the following are valid interpretations of the P-value?

1 False. prualue us used to Conchole Total \# of simulations. how unlikely obS. dater are ib Ho is true. Value can't be interpreted in terms

Lightning Round Question 2

Fill in the respective blanks:
Suppose we wish to test the null hypothesis that a Yoga method does not have an effect on blood pressure versus the alternative that it does have an effect. A XX error would be made by concluding that the Yoga method $\underline{X X}$ on blood pressure if in fact the Yoga method $\underline{X X}$ on blood pressure.

Truth
2 A. Type 2; does have an effect; does have an effect
3
$\sqrt{66}$
B. Type 2; does not have an effect; does not have an effect reject Ho Ho is true
C. Type 1; does have an effect; does not have an effect

2 D. Type 1; does not have an effect; does not have an effect

2 E. P-value error; does have an effect; does not have an effect

Lightning Round Question 3
In statistical inference, we want to make conclusions about what we think about the theoretical world or population based on what we've observed in the real world (data, typically observed on a random sample).
Do the following items exist in the theoretical world or the real world?

Lightning Round Question 4

Consider the following R code.

```
Tosses <- c("H","H","T", "H")
myfunction <- function(x){
    result <- sample(x = x, replace = FALSE)
    sum(result == "T")
}
myfunction(Tosses)
```

Sample (Tosses, $n=2$, replace $=T$) first selection T second
T

Which of the following is the value that myfunction(Tosses) will return:
(I) 0
(II) 1
(III) 2
(III) 3
(IV) 4

Sample c("H, H", "T, "H") always return some permutation
of $H, H, T, H, e-g ., H T H H$

Case Study: American Community Survey 2012

Case Study: American Community Survey 2012

The American Community Survey is conducted by the US Census Bureau each year on a random sample of 3.5 million households. Findings from the survey influence the allocation of more than $\$ 400$ billion in federal and state funds. The dataset acs 12 is a random sample from the people who completed the American Community Survey in 2012.

Here is a look at the data and some of the variables we will consider later:

```
glimpse(acs12)
## Observations: 2,000
## Variables: 13
## $ income <int> 60000, 0, NA, 0, 0, 1700, NA, NA, NA, 45000, NA, ...
## $ employment <fct> not in labor force, not in labor force, NA, not i...
## $ hrs_work <int> 40, NA, NA, NA, NA, 40, NA, NA, NA, 84, NA, 23, N...
## $ race <fct> white, white, white, white, white, other, white, ...
## $ age <int> 68, 88, 12, 17, 77, 35, 11, 7, 6, 27, 8, 69, 69, ...
## $ gender <fct> female, male, female, male, female, female, male,...
## $ citizen <fct> yes, yes, yes, yes, yes, yes, yes, yes, yes, yes,...
## $ time_to_work <int> NA, NA, NA, NA, NA, 15, NA, NA, NA, 40, NA, 5, NA...
## $ lang <fct> english, english, english, other, other, other, e...
## $ married <fct> no, no, no, no, no, yes, no, no, no, yes, no, no,...
## $ edu <fct> college, hs or lower, hs or lower, hs or lower, h...
## $ disability <fct> no, yes, no, no, yes, yes, no, yes, no, no, no, n...
## $ birth_qrtr <fct> jul thru sep, jan thru mar, oct thru dec, oct thr...
```

```
table(acs12$employment)
```


Case study question 1

Describe the data frames that are created by each of the following commands: not missing.
(A) labor_force <- acs12 \%>\% filter(!is.na(employment)) \%>\% filter (employment == "employed"(employment == "unemployed")
(B) employed <- labor_force \%\%\% filter or employment $==$ "employed")
all observations where employment is equal to employed.
(C) $\left[\begin{array}{c}\text { employed <e en ploy } \\ \text { mutate ededun }=\text { re } \\ \text { Crates } \\ \text { new column. }\end{array}\right.$ ololvalue new value cat_vars <- acs12 \% > The Columns in select Comm defining a new column called select(employment, race, gender, citizen, lang, married, edu, disability, birth_qrtr)
(A) Observations in acsiz where employment is not missing and employment is either "employed" or " unemployed".

Case study question 2

We've used these plot geometries:
geom_bar, geom_boxplot, geom_dotplot, geom_histogram, geom_line, geom_point, geom_vline

Recall this plot vocabulary:

- Bar plots: modes, frequency olistribution of Categorical variable F.
- Histograms / boxplots: centre, spread, modes (unimodal, bimodal, multimodal, no mode), frequency, symmetric / left-skewed / rightskewed, outliers
distribution of quantitathe variables.
- Scatterplots: strong / weak / no relationship, linear (positive or negative) / nonlinear relationship, and outliers.

On the next several slides are a number of plots, each constructed from the dataset employed. For each:

- What type of plot is it?
- What ggplot geometry is used?
- What is the purpose of the plot?
- Describe the distribution(s) of the variable(s).

Plot 1

- What type of plot is it?

Boxplot

- What ggplot geometry is used? geom-boxplot ()
- What is the purpose of the plot? Compare the distribution of income for
- Describe the distributions) of the variables). different educ cation level r.

Histo for HoOT lower.

right Skewed

Plot 2

- What type of plot is it? Bar Plot.
- What ggplot geometry is used?

$$
\begin{aligned}
& \text { geom_bar () } \\
& \text { olistribution of ed. }
\end{aligned}
$$

- Describe the distributions) of the variables).

$$
\begin{aligned}
& \text { more people are in hs or lower, then next } \\
& \text { most frequent is College, then grace. }
\end{aligned}
$$

Plot 3

- What type of plot is it? histogram.
- What ggplot geometry is used?
geom-histogramll
- What is the purpose of the plot? distribution of income.
- Describe the distribution (s) of the variables). Night skewed.
- What is the difference in these histograms? Bin Size in right histogram is smaller then left histogram/19/29

Case study question 3

We have looked at simulations to estimate P-values in hypothesis tests.

Case study question 3

We have looked at simulations to estimate P-values in hypothesis tests.
The hypothesis tests we have considered are:

- single proportion
- comparing two proportions
- comparing two statistics for continuous variables (e.g., means, medians, sd)

Case study question 3

We have looked at simulations to estimate P-values in hypothesis tests.
The hypothesis tests we have considered are:

- single proportion
- comparing two proportions
- comparing two statistics for continuous variables (e.g., means, medians, sd)

The purpose of the simulation was to examine possible values of a statistic under an assumption. Two cases of this were considered:
Ho is true.

Case study question 3

We have looked at simulations to estimate P-values in hypothesis tests.
The hypothesis tests we have considered are:

- single proportion
- comparing two proportions
- comparing two statistics for continuous variables (e.g., means, medians, sd)

The purpose of the simulation was to examine possible values of a statistic under an assumption. Two cases of this were considered:

- simulate outcomes for a proportion
- simulate the difference in a statistic between groups

Case study question 3

Below is code for three simulations. For each:

- What is the purpose of the simulation?
- State the hypothesis test being conducted?
- What are the null and alternative hypotheses?
- Estimate the P-value from the values plotted.
- What is your conclusion?

Some statistics that might be useful

```
labor_force %>%
    group_by(employment) %>% summarise(n_group = n()) %>%
    mutate(percent = n_group / sum(n_group))
## # A tibble: 2 x 3
## employment n_group percent
## <fct> <int> <dbl>
## 1 unemployed 106 0.112
## 2 employed 843 0.888
```

```
employed %>% group_by(edu2) %>% summarise(median(income))
```



```
    employed %>% group_by(edu2) %>% summarise(mean(income))
    ## # A tibble: 2 x 2
    ## edu2 `mean(income)`
## <fct> <dbl>
## 1 hs_or_lower 29963.
## 2 more_than_hs 65010.
```


Histogram of Simulated Values.

usually
at Value
of Ho

- What does the y-axis represent?
- Estimate the P-value.

Count of Simulated proportions
falling within histog rambins.

- What do you conclude?

$$
\text { P-value }=\# \text { of Simulation } \geqslant 0.11 \text { or } \leqslant \underbrace{0.089-(0.11-.089)}_{0.066}
$$

assumuring

Simulation 2

```
set.seed(1)
repetitions <- 100
x <- rep(NA, repetitions)
for (i in 1:repetitions)
{
    sim <- employed %>% mutate(edu2 = sample(edu2))
    sim_stat <- sim %>% group_by(edu2) %>%
        summarise(medians = median(income)) %>%
        summarise(diff(medians))
    x[i] <- as.numeric(sim_stat)
}
```

- What is the purpose of the simulation? Test Mo median income is olffenent
- State the hypothesis test being conducted? What is H_{0}, H_{A} ?
- What are the null and alternative hypotheses?

Ho: Median_hslow $=$ Median Hs more
$H_{A}=$ Median_Hsbow \neq Median-Hsmore

Histogram of Difference of Medians

- Estimate the P-value.

Observed oliff, in Medians

- What do you conclude?

$$
=46000-23000=23000
$$

$$
p \text {-Value }=\frac{\# \operatorname{Sim} s \geq 23000 \text { or } \leqslant-23000}{100}
$$

Strong evidence that
there us a difference in
medians.

$$
=\frac{0}{100}=0
$$

Simulation 3

```
set.seed(1)
repetitions <- 100
x <- rep(NA, repetitions)
for (i in 1:repetitions)
{
    sim <- employed %>% mutate(edu2 = sample(edu2))
    sim_stat <- sim %>% group_by(edu2) %>%
        summarise(mean = mean(income)) %>%
        summarise(diff(mean))
    x[i] <- as.numeric(sim_stat)
}
```

- What is the purpose of the simulation?
- State the hypothesis test being conducted? What is H_{0}, H_{A} ?
- What are the null and alternative hypotheses?

This example no similar to simulation 2 except the mean is used instead of the median.

- Estimate the P-value.
- What do you conclude?

