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Today's Class

= Supervised versus Unsupervised Learning

m Classification Trees

= |nterpreting a Classification Tree

= Geometric Interpretation of a Classification Trees
= Classification Tree Methodology

= Training and Testing Classification Trees

= Accuracy of Classification Trees

® ROC Curves
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Learning from Data
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Supervised versus Unsupervised
Learning

= Many statistical learning problems fall into one of two categories:
supervised or unsupervised.

= |nsupervised learning problems there is a response measurement y
that we would like to predict, based on variables z,, z,,...,=,.

= Variables are often called features, predictors, covariates, independent
variables, or inputs.

= Response measurements are often called outputs, labels, or dependent
variables.
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Image Classification Example

= |magine that we want to build
a system that can classify
Images as containing, say, a
house, a car, a person or a pet.

= We first collect a large data set
of images of houses, cars,
people and pets, each labelled
with its category.

= Convert theimages to input
variables.

library(jpeg)

# get RGB intensity 0 - 255
img <- readJPEG("pika.jpg")
img[40:41,51:52,1]

#it [,1] [,2]
## [1,] 0.1568627 0.015686275
## [2,] 0.2745098 0.003921569
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Image Classification Example

= "Train" an algorithm.

= The algorithm produces an output in the form of a vector of scores, one
for each category.

= We want the desired category to have the highest score of all
categories, but this is unlikely to happen before training.

= We next compute the error between the output scores and the true
scores.
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Classification Trees
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Classification Trees

= Data was collected on 50 cancer patients to investigate the effectivness
(Yes/No) of a treatment.

= Two quantitative variables, z; € (0,1),i = 1,2, are considered to be
important predictors of effectiveness.
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Classification Trees
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library(rpart)
/’ SO e dapundurtvaridle
plot(as.party(tree), type = "simple", gp = gpar(cex = 0.8)) (\/ \WD‘QV\&LW_},
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Interpreting a Classification Tree

Pp@b\ac@(m S Voesed o

\/V\Okso\r g Y \e.

222222

nodes, andckthree of these
nodes are€ terminal nodes.

= Terminal nodes are indicated
by rectangular boxes, and
nonterminal nodes are
indicated by ovals.

= |f'a subject has 1 < 0.211 then

the prediction is that
effectiveness = Yes (i.e., the
treatment is effective)i ¥
subjects have z1 < 0.211 and
42.9% (3 subjects) have
effectiveness = No, and 57.1%
(4 subjects) have effectiveness
= Yes.

If a subject has z1 > 0.211 and

z2 < 0.586 then the prediction is

that effectiveness = No. 16

subjects have z1 > 0.211 and

22 < 0.586 and 18.8% (3 subjects)

have effectiveness =Yes, and

81.2% (13 subjects) have

effectiveness = No. 10/ 50



Geometric Interpretation of a

Classification Trees

A scatter plot of z1,22 is shown below where each point is labelled by

effectivness.

ggplot(dat, aes(xl, x2, shape = factor(type_cat), colour = factor(type_cat))) +

geom_point(size = 2) +
theme_minimal() +

scale_color_discrete(name = "Effectiveness", breaks = c("Yes", "No")) +
scale_shape_discrete(name = "Effectiveness", breaks = c("Yes", "No"))
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Geometric Interpretation of a
Classification Tree

V(P,‘-(Sg_v\,-\-ud\v\ \n éd*”t g?“'C-Q_ .
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ﬂ;ecti eeeeee
A Yes
® No

= An equivalent way of looking at
this tree is that it divides the
unit square into rectangles.

0.\ ILS,O.S.\\

= The division is recursive since it
first splits the rectangle into .
two pieces, then it may split o
each of these rectangles into & i
two pieces, etc.

12/50



Classification Tree Methodology

1. Aset of binary questions. For example, is {z1 < 0.5}?
2. Amethod to evaluate if a splitis "good".

3. Arule to stop-splitting.
4

. Arule for assigning every terminal node to a category (i.e., Yes or No).
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Classification Tree Methodology - The
standard set of questions

N\,___g\ WM Cowmr Q\Ct\mp({.

Suppose that we have M variables z,,z,,...,z), which can be a mixture of
of continuous and categorical variables.

Each split depends on the value of only a single variable.

For each continuous variable z,,, a splitis of the form: is {z,, < c}? oris

{an > c}?, ¢ € (=00,0). A= Sncomew] Low, ma thighy
If z,, is categorical, taking values, say, in {b,b,,...,b;} then splits are of
the form: is {z,, € $}? as S ranges over all subsets of {b,,b,...,b.}.

2 Low ¥, Qued§ {bisgin]
\Low; W\%\\&5 } low) {,—H\BM
$ nad H‘B\:&
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Classification Tree Methodology - The
standard set of questions

= At each node the tree algorithm searches through the variables one by
one.

= For each variable it finds the 'best' split.

= Then the algorithm compares the m best single variable splits and
selects the best of the best.
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Classification Tree Methodology - The
Splitting and Stop Splitting Rule
In order to perform recursive binary splitting:

= Anode of atree is said to be impure when all classes are equally mixed
together.

= For example, a node that had 50% of subjects with effectiveness = No
and 50% of subjects with effectiveness = Yes.

= Two popular measures of impurity, i(t), for node ¢ are Gini, and Entropy:
Gini(t) = 1 — (wi(t))* + (wa(t))?, Entropy(t) = —wi(t)logy(wi(t)) + ws(t) log,(ws(t)),

where w;(t) is the fraction of records belonging to class i at node .
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Classification Tree Methodology - The
Splitting and Stop Splitting Rule

= The "goodness" of a splitis the decrease in impurity A7. The maximum
decrease in impurity is defined as the best split.

= Asimple stop-splitting rule is to set a threshold, say g > 0, and declare a
node terminal if AT < 8.
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Example: Predicting High Earners

= What factors can be used to predictif a person is a high earner?

= Capital gains tax is the tax paid on profit from the sale of an asset (e.g.,
stock, bond, property).

= Does the amount of capital gains tax predict if a person is a higher
earner?

18/50



Example: Predicting High Earners

census %>% ggplot(aes(income)) +

geom_bar (colour = "black", fill = "grey", alpha = 0.5) +
theme_minimal()
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Example: Predicting High Earners

census %>% ggplot(aes(capital.gain)) +
geom_histogram(colour = "black", fill = "grey", alpha = 0.5) +
theme_minimal()
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Example: Predicting High Earners

census %>% ggplot(aes(x = capital.gain, y = income)) +
geom_count(position = position_jitter(width = 0, height = 0.1), alpha = 0.5) +
scale_x_loglO(labels = scales::dollar, breaks = c(0,1000,5000,100000)) +
theme_minimal() +

theme (legend.position = "none'")
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Example: Predicting High Earners

Classify people with capital gains less than $5000 as low earners and

greater than $5000 as high earners.

income

>50K

<=50K

A

$1,000

$5,000
capital.gain

B, . o

$100,000
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Evaluating Classification Tree
Models
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Resampling Methods in Statistics

= There are several types of resampling methods in statistics.

= The randomization and permutation tests have been used to calculate
p-values.

= The bootstrap has been used to calculate confidence intervals.

= Resampling can also be used to assess the accuracy of a prediction
model.
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Validation Set Approach

= Suppose that we would like to estimate the test error associated with
fitting a particular statistical learning method on a set of observations.

= The validation set approach involves randomly dividing the available
set of observations into two parts: a training set and a validation set or
hold-out set.

= The tree modelis fit on the training set, and the fitted model is used to
predict the responses for the observations in the validation set.
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Validation Set Approach

The validation set approach has two drawbacks:

1. The test error rate can be variable since it depends on which
observations are included in the training and validation set.

2. Only a subset of the observations are used to fit the tree. Statistical
methods perform worse when trained on fewer observations. Thus, the
validation set approach may tend to overestimate the test error rate.
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Training and Testing Classification
Trees

= Separate the data set into two data sets by randomly selecting rows.
= Asample of 80% of the rows will become the training data set.

= The remaining 20% will be set aside as the testing (or "hold-out") data
set.

= There are no formal rules about the percentage of data that should be
training and testing.
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Training and Testing Classification

Trees g reso M
set.seed(364) /

# number of observations in census data
n <- nrow(census)

n ovwiéi3wr\ 4;
%G\_\N\«Q\ QO— &Q% O——C STowS

## [1] 32561 /
# random sample of 20% of row indexes

test_idx <- sample.int(n, size = round(0.2 * n))
# training data is all observations except from training row indexes
train <- census[-test_idx, ]

nrow(train) p e ~Xt CLU DKQ J(\/\,eé,( \/bWS (4" _Jr\fu"\’\'Iv\g S—Q7\'
4 o CowwsSin \-ey 095 o+ dodter LS radonly

## [1] 26049 "h“’kw\l\"g_
# test data QQ’&Q’C/ ‘

test <- census[test_idx, ]
nrow(test)

## [1] 6512 c@}-a‘c/‘(bws N ’\"€S'SV S@C‘
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Training and Testing Classification

Trees LS /C\N\C,)Y\wf\ enmSu ) Aé%agv W\CQM
X \§ Areaded oy o e -

mutate(income = factor(income), workclass = factor(workclass),
education = factor(education), marital.status = factor(marital.status),
occupation = factor(occupation), relationship = factor(relationship),
race = factor(race), sex = factor(sex))

test <- test %>%
mutate(income = factor(income), workclass = factor(workclass),
education = factor(education), marital.status = factor(marital.status),
occupation = factor(occupation), relationship = factor(relationship),
race = factor(race), sex = factor(sex))

ngof‘vv'\ /X’U\;o e\o&c\- M (/\/HJ\\ AM Je\,\{ 'p{a\:x\’fe Lfa.f?wg{g“/
C@\j‘o»\f‘C“A'Cfé

29 /50



Example: Predicting High Earners
. _— Copnt e nower O of oo Servaio) LA

RN Cecin W Cont ravy

mutate(relfreq = round(n/sum(n),2)) \ \ou'&\\y\Q
## # A tibble: 2 x 3 C'\FCOJK \(\Q,w \IQJ\/‘((&\OQ 6_@ m
## dincome  n relfreq ’&\Q " ~ ﬁg—; - P@QP(L (A LV\,COW\LS@p
##  <fct> <int>  <dbl> c%\re- Ué )
P = o~ dodon Sk -

= |f we predict that everyone in the training data earns less than 50K then

we will be correct with 76% accuracy.
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Example: Predicting High Earners

= |f we use the plot of income versus capital gains and we use the split
$5000 capital gains then the accuracy of our prediction changes to:

split <- 5000
confusion_dat <- train %>%

mutate (hi_cap_gains = capital.gain >= split) %>%
group_by(income, hi_cap_gains) %>%
summarise(n = n())

confusion_dat

## # A tibble: 4 x 3

##
##
##
##
##
##
##

#

A WN R

Groups:
income
<fct>
<=50K
<=50K
>50K
>50K

income [?7]

hi_cap_gains n
<lgl> <int>
FALSE 19613
TRUE 119
FALSE 5115
TRUE 1202
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Example: Predicting High Earners -
Confusion Matrix

= The data can be displayed as a confusion matrix.

confusion <- matrix(confusion_dat$n,byrow = F, ncol = 2)

rownames (confusion) <- c("Cap Gains < $5000", "Cap Gains >= $5000")
colnames(confusion) <- c("Income <50K", "Income >= 50K")
confusion

;ru*\‘\&

gc)@s## . Income<5QK Income >=-5@ CQV\CQJQ\‘@(\ \fV\Oj\VtXc
?r&\‘ ## Cap Gains < $5000 ( 1iiii <\_ evrors

## Cap Gains >= $5000 @
Pt
ZevvrocS.

= The overall accuracy has increased to
(19613+1202)/(19613+1202+119+5115) = 0.799071.

—)

%®®/g O/@ %QOQLQ drt Correctly Clesss Hel Ug\v\é_

\ ng =
Cowp - 30»\“\«5 SE N ==
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Example: Predicting High Earners -
Confusion Matrix

= |5 $5000 the "best" split of capital gains to predict income?

= We want to find the value of capital gains such that it "splits" the data
into low/high income.

= There are several measures that are used to find measure the goodness
of a split.

= Two popular measures are the Gini index and Entropy.
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Example: Predicting High Earners -
Plotting

library(rpart)

tree <- rpart(income ~ capital.gain, data = train, parms = Llist(split = "gini"))

tree

## n= 26049

## (\ .

## node), split, n, loss, yval, (yprob)

#it * denotes terminal node e ! {\C@ \’OV\\FZ-' ,\.\
44 1eo\ C"H\X .
## 1) root 26049 6317 <=50K (0.75[49549 Q.24 SBM fo\a P

## apital.gain< 5095.5 (0.7936168% 0.20638315) * ?

H## capital.gain>=5095.5 5 63 >50K (0.04980237 0.95019763) *

library(partykit)
plot(as.party(tree),type = "simple", gp = gpar(cex = 0.5))

Splc},
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Classification Tree Accuracy

m The test data was not used to build the tree.

= |f the tree only works well on the data that was used to build the tree,
and poorly on a new set of data then the model (i.e., tree) is said to be
overfit.

= Thisis the rationale behind using part of the data to buid the model
(i.e., tree) and using another part to test the accuracy of the tree.

T’G R P("CCD\L\C_\\W\ O\,\SQ(\\‘]‘V\W\ LS ot H o, LR S

\J\e\fa wWe L\ O\ W /(r\rmivxmg_ Aw'\*a\ J\o\ﬂr A0ES WC‘JV
Warh. well oa new dofta Pran Ha S

1S Called over %%\“3»
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Classification Tree Accuracy

= The accuracy of the classification tree model is captured in a table of

actual (observed) incomes versus the predicted incomes for each
person.

T\/\ \S CUA,-Y@Q\V\AT \fOQLS
» Thetableis often called a confusion matrix. o C\a,ﬁmc\ej LN Péo&)\m

Lo earved LLoK
predicted_tree <- predict(object = tree, newdata = test, type = "class") — ¢

table(predicted_tree,test$income) # confusion matrix

o WWAN  Sselder
i / i COVV\\DOM/‘Q/\}) /&—c
## predicted_tree <=50K >50K
oo a0 e > 5o k-

Hagasa 2, 242
= The overall accuracy of the tree is (4969 +294)/(4969 + 1230 + 19 +294) =
0.8082002.

= For those that earned <=50K the accuracy is: 4969/(4969 + 19) =
0.99619009.

= For those that earned >50K the accuracy is: 294/(294 + 1230) =
0.1929134.
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Classification Tree Accuracy

Consider the confusion matrix: pes - teeS

Predicted <=50K >50K Total
MNespnee. <=D0K @ @ a+b

Cos He >50K @ @ c+d

Total a+c b+d N

N=(a+b+c+d).

Assume we are trying to predict >50K. So this outcome will be considered
positive, and <=50K is negative.

= True positive rate (sensitivity): d/(b+d)
= True negative rate (specificity): a/(a+c)
= False positive rate: ¢/(a+c)

= False negative rate: b/(b+d)
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Classification Tree Accuracy

predicted_tree <- predict(object = tree, newdata = train, type = '"class")
table(predicted_tree, train$income) # confusion matrix
¢ \)‘&

N oI\
4 - %/? \/\j\/\cﬁr B Q‘f‘f @\I‘QW@JJL
## predicted_tree <=50K >50K
## <=50K 19669 5115 O
## >50K 63 1202 CCuy FO\'C"a‘ \‘

LWt 5 Sensadiriy?
Whede \s SBECHTT Ty

G\re«cu& (LC(,\(WA.Uél: L\ QQW’\' \0\a L —_ @-86 \
19 HEO + e 3+ SUS

g,@,\g@%{\f\%_,: __/\fé&__/ — 0.\Q0

C)\OL‘\’gug
ey . = -0

Specindy = g ae3

= |s there evidence of overfitting?
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Classification Trees - Picking the
threshold value

= |t tried all possible values ¢, such that capital gain < c.

= $5095 was the one the value that gave the "best" separation between
>50K and <=50K.
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Classification Trees - Adding more
variables

We have used only one variable to predict income, but we can use the other
variables in the data to try and improve the accuracy.
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Classification Trees - Adding more
variables

form <- as.formula("income ~ age + workclass + education + marital.status + occupation +

relationship + sex + capital.gain + capital.loss + hours.per.week")
mod_tree <- rpart(form, data
mod_tree

ot W onn Avoinung -

## n= 26049

H##

## node), split, n, loss, yval, (yprob)
#t * denotes terminal node

H##

## 1) root 26049 6317 <=50K (0.75749549 0.24250451)
#t 2) relationship=Not-in-family,Other-relative,Own-child,Unmarried 14196 947 <=50K (0.93329107 0.06670893)

H## 4) capital.gain< 7073.5 13946 706 <=50K (0.94937617 0.05062383) *

H## 5) capital.gain>=7073.5 250 9 >50K (0.03600000 0.96400000) *

## 3) relationship=Husband,Wife 11853 5370 <=50K (0.54695014 0.45304986)

#t 6) education=10th,11th,12th,1st-4th,5th-6th,7th-8th,9th,Assoc-acdm,Assoc-voc,HS-grad,Preschool,Some-college 82
H## 12) capital.gain< 5095.5 7857 2355 <=50K (0.70026728 0.29973272) *

H## 13) capital.gain>=5095.5 423 9 >50K (0.02127660 0.97872340) *

#t 7) education=Bachelors,Doctorate,Masters,Prof-school 3573 972 >50K (0.27204030 0.72795970) =*
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Classification Trees - Adding more
variables

library(partykit)
plot(as.party(mod_tree),type = "simple",
gp = gpar(cex = 0.4))

[1]
relationship

at-in-family, Other-relative, Own-child, Unmarried Husband, Wife,
5]
= <7073.5 27073.5  — 10th, 11th, 12th, 1st-4th, 5thpéth, 7th-8th, 9th, Assoc-acdm, Assoc-Bachelors, Doctorate, Masters, Prof-school
13 14} (6] {9}
<=50K >50K capital.gain S
(n = 13946, err = 5.1%) (n = 250, err = 3.6%) piial.g (n = 3573, err = 27.2%)

E <5095.5 =5095.5 E
<=50K >50K
(n=7857, err = 30.0%) (n=423, err=21%)

mod_tree

n= 26049

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 26049 6317 <=50K (0.75749549 0.24250451)

2) relationship=Not-in-family,Other-relative,Own-child,Unmarried 14196 947 <=50K (0.93329107 0.06670893)
4) capital.gain< 7073.5 13946 706 <=50K (0.94937617 0.05062383) x*
5) capital.gain>=7073.5 250 9 >50K (0.03600000 0.96400000) *

3) relationship=Husband,Wife 11853 5370 <=50K (0.54695014 0.45304986)
6) education=10th,11th,12th,1st-4th,5th-6th,7th-8th,9th,Assoc-acdm,Assoc-voc,HS-grad,Preschool,Some-college 8280
12) capital.gain< 5095.5 7857 2355 <=50K (0.70026728 0.29973272) * 42 / 50
13) capital.gain>=5095.5 423 9 >50K (0.02127660 0.97872340) *



Accuracy of Classification Tree

predicted_mod <- predict(mod_tree,(newdata = test, e = "class")
table(predicted_mod, testS$income)

##

## predicted_mod <=50K >50K
## <=50K 4731 755
## >50K 257 769

= The overall accuracy s ...

H?’B( -\’%Q\

A L+ Fen 36 369
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Accuracy of Classification Tree

= |nstead of predicting class we can predict probability.

predicted_tree <- predict(object = mod_tree, newdata = test, type = "prob")
head (predicted_tree)

s sk >50K &\ C\\vaa{,\m @fq\fy

## 1 0.7002673 0.2997327
## 2 0.2720403 0.7279597
## 3 0.7002673 0.2997327
## 4 0.7002673 0.2997327
## 5 0.7002673 0.2997327
## 6 0.0212766 0.9787234

# 1f predicted prob of >50K is >=0.5 then predicted class is >50K
# otherwise predicted class is <=50K

m <- table(predicted_tree[,2] >= 0.5,test$income)

row.names(m) <- c("Pred <50K","Pred >=50K")

m

B o dobw \ Yt SeAding LS USuing
o Cu-r —PQW\,—(— @”O\O s 8

#H# Pred >=50K 257 769
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Classification Tree Accuracy

Since 24% of the sample earns >50K perhaps this is a more sensible cutoff

for prediction.

predicted_tree <- predict(object = mod_tree, newdata = test, type = '"prob")

m <- table
row.names(m) <- c("Pred <50K","Pred >

m

##
##
##
##

<=50K >50K

st$income)

Pred <50K 3370 166
Pred >=50K 1618 1358

P
J—

2230 L (355

3230 +BSE Hloh + 6\

o. S

\\\‘\Cjﬂwt% (3J*~@6W9r%wd@“
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ROC Curves

The ROC curve is a plot of the true positive rate versus the false positive rate
for various cut-points.

pred <- ROCR::prediction(predictions = predicted_tree[,2], testS$income)
perf <- ROCR::performance(pred, 'tpr', 'fpr')

perf_df <- data.frame(perf@x.values, perf@y.values)

names (perf_df) <- c("fpr", "tpr")

roc <- ggplot(data = perf_df, aes(x = fpr, y = tpr)) +

geom_Lline(color = "blue") + geom_abline(intercept = 0, slope = 1, 1ty = 3) +
ylab(perf@y.name) + xlab(perf@x.name)
roc -
1.00 -

o

~

o
1

0.50 -

True positive rate

o

N

o
1

0.00 0.25 0.50 0.75 1.00
False positive rate 46 / 50



ROC Curves

= The ROC curve is a plot of all
possible threshold values for
classification.

= The upper-left corner
represents a perfect classifier,
which would have a true
positive rate of 1 and a false
positive rate of 0.

True positive rate
o

= Arandom classifier would lie
along the diagonal, since it
would be equally likely to
make either kind of mistake.

.50
False positive rate
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ROC Curves

The true positive rate and false positive rate for a tree classifier with
cutpoint 0.5.

predicted_tree <- predict(object = mod_tree, newdata = test, type = '"prob")
m <- table(predicted_tree[,2] >= 0.50,test$Sincome)

row.names(m) <- c("Pred <50K","Pred >=50K")

tpr_50 <- m[4]/sum(m[,2])

fpr_50 <- m[2]/sum(m[,1])

tpr_50

## [1] 0.5045932
fpr_50

## [1] 0.05152366
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ROC Curves

The true positive rate and false positive rate for a tree classifier with
cutpoint 0.24.

predicted_tree <- predict(object = mod_tree, newdata = test, type = '"prob")
m <- table(predicted_tree[,2] >= 0.24,testS$Sincome)

row.names(m) <- c("Pred <50K","Pred >=50K")

tpr_24 <- m[4]/sum(m[,2])

fpr_24 <- m[2]/sum(m[,1])

tpr_24

## [1] 0.8910761
fpr_24

## [1] 0.3243785
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ROC Curves

The tree with a cutpoint of 0.5 is shown as the black dot and the tree with a
cutpoint of 0.24 is shown as the red dot.

roc + geom_point(x = fpr_50, y = tpr_50, size = 3, colour = "black") +
geom_point(x = fpr_24, y = tpr_24, size = 3, colour = "red")
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