STA130H1 - Class # 1: Introduction to R, Histograms and Density Functions

Prof. Nathan Taback 2018-01-08

Welcome to STA130H1

- Login to Portal to get the location of your tutorial room (look under My Groups).
- Let's explore the course website

A Brief Introduction to R

What is R?

[Home]

Download

CRAN

R Project

About R Logo Contributors

The R Project for Statistical Computing

Getting Started

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To **download R**, please choose your preferred CRAN mirror.

If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

R Coding basics

Go to console ...

Histograms and Density Functions

Histograms and Density Functions

• The histogram of a variable is a graphical method to vizualize the distribution of a single variable.

Histograms and Density Functions

• Different bin width will yield different histograms

```
p1 <- ggplot(data = happinessdata2016, aes(x = life_ladder)) +
  geom_histogram(binwidth = 0.1)
p2 <- ggplot(data = happinessdata2016, aes(x = life_ladder)) +
  geom_histogram(binwidth = 1.0)
grid.arrange(p1,p2,nrow = 1)</pre>
```


Mathematical Definition of Histogram

• The bins of the histogram are the intervals:

 $[x_0 + mh, x_0 + (m+1)h).$

 x_0 is the origin, $m = \dots, -1, 0, 1, \dots$ indexes the bins, and $h = (x_0 + (m+1)h) - (x_0 + mh)$ is the bin width.

- The bins can be used to construct rectangles with width h and height $\hat{f}(x)$.
- The area of these rectangles is $h\hat{f}(x)$.
- The area of the rectangles is the same as the proportion of data in the same bin as *x*.

Example - Mathematical Definition of Histogram

dat <- data_frame(x = c(1,2,2.5,3,7)) datx

[1] 1.0 2.0 2.5 3.0 7.0

Let $x_0 = 0.5, h = 0.25, m = 1, \dots, 29$

seq(0.5, 7.5, by = 0.25)

[1] 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 [15] 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 [29] 7.50

The bins are: $[0.50, 0.75), [0.75, 1.00), [1.00, 1.25), \dots, [7.25, 7.50).$

Example - Mathematical Definition of Histogram

density	xmax	xmin	Х	count	У
0.0	0.75	0.50	0.625	0	0.0
0.0	1.00	0.75	0.875	0	0.0
0.8	1.25	1.00	1.125	1	0.8
0.0	1.50	1.25	1.375	0	0.0
11/19 0.0	1.75	1.50	1.625	0	0.0

Mathematical Definition of Histogram

• Suppose we have data: X_1, X_2, \ldots, X_n .

.

- Let #{*X_i* in same bin as *x*} be the number of data points *X_i* in the same bin as *x*.
- Let *n* be the total number of data points. So, $\frac{\#\{X_i \text{ in same bin as } x\}}{n}$ is the proportion of data in the same bin as *x*.

• Area of rectangle containing $x \approx \frac{\#\{X_i \text{ in same bin as } x\}}{n}$.

$$h\hat{f}(x) = \frac{\#\{X_i \text{ in same bin as } x\}}{n}$$

Mathematical Definition of Histogram

$$\hat{f}(x) = \frac{1}{hn} \# \{X_i \text{ in same bin as } x\}$$

is called the **histogram estimator**.

 $\hat{f}(x)$ is an estimate of the density at a point x.

To construct the histogram we have to choose an origin x_0 and bin width h.

Choosing Origin and Bin Width in R

Same bin width but different origin

Naive Estimator of Density

The histogram can be centered on a point *x*.

$$\hat{f}(x) = \frac{1}{2hn} \#\{X_i \in (x - h, x + h)\}$$

This estimate is often called the **naive estimator** of the density.

This can be expressed by defining the weight function w(x) by

$$w(x) = \begin{cases} 1/2 & \text{if } |x| < 1\\ 0 & \text{if } |x| \ge 1. \end{cases}$$

Then the naive estimator can be written

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} w\left(\frac{x - X_i}{h}\right).$$

15/19

Naive Estimator of Density

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} w\left(\frac{x - X_i}{h}\right).$$

- Consider the histogram constructed from data using bins of width 2*h*.
- Assume that x is at the centre of one of the histogram bins then the naive estimate will be the same as the y value of the histogram estimate.

Naive Estimator in R

ggplot(data = happinessdata2016, aes(x = life_ladder, ..density..)) +
geom_histogram(binwidth = 0.25) + geom_density(kernel = "rectangular")

17/19

Kernel Estimator

Replace the weight function is by a kernel function $K(x) \ge 0$ which satisfies $\int_{-\infty}^{\infty} K(x) = 1$. The **kernel estimator** of the density function is defined by

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right).$$

The Gaussian kernel is a popular choice

$$K(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty.$$

Kernel Estimator in R

p_gauss <- ggplot(data = happinessdata2016, aes(x = life_ladder, ..density..)) +
 geom_histogram(binwidth = 0.25) + geom_density(kernel = "gaussian")
p_rect <- ggplot(data = happinessdata2016, aes(x = life_ladder, ..density..)) +
 geom_histogram(binwidth = 0.25) + geom_density(kernel = "rectangular")
grid.arrange(p_gauss,p_rect)</pre>

19/19

