STA130 - Class #2:

Nathan Taback 2018-01-15

Today's Class

- Histograms and density functions
- Statistical data
- Tidy data
- Data wrangling
- Transforming data

Histograms and Density Functions

Histograms and Density Functions

- The histogram of a variable is a graphical method to vizualize the distribution of a single variable.
- To construct a basic histogram:
- 1. Divide the data into intervals (called bins).
- 2. Count the number of observations that are contained in the bin.
- 3. Plot rectangles with height equal to the count from (2) and width equal to the width of the bin.

Histograms and Density Functions

• Different bin width will yield different histograms

Mathematical Definition of Histogram

• The bins of the histogram are the intervals:

 $[x_0 + mh, x_0 + (m + 1)h).$

 x_0 is the origin, $m = \dots, -1, 0, 1, \dots$ indexes the bins, and $h = (x_0 + (m + 1)h) - (x_0 + mh)$ is the bin width.

Example - Mathematical Definition of Histogram

dat <- data_frame(x = c(1,2,2.5,3,7)) dat\$x

[1] 1.0 2.0 2.5 3.0 7.0

Let $x_0 = 0.5, h = 0.25, m = 1, \dots, 29$

seq(0.5, 7.5, by = 0.25)

[1] 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 [15] 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 [29] 7.50

The bins are: [0.50, 0.75), [0.75, 1.00), [1.00, 1.25), ..., [7.25, 7.50).

Example - Mathematical Definition of Histogram

- The bins can be used to construct rectangles with width h = 0.25 and height y.
- *y* will be called density.
- The area of these rectangles is *hy*.
- We would like the area of these rectangles, *hy*, to be the same as the proportion of data in the bin. This will make the sum of all areas equal 1.
- Let *n* be the number of observations. Then,

$$hy = \frac{\#\{X_i \text{ in bin}\}}{n}$$

• In this example, n = 5, and $X_1 = 1, X_2 = 2, X_3 = 2.5, X_4 = 3, X_5 = 7$.

Example - Mathematical Definition of Histogram

Mathematical Definition of Histogram

$$\hat{f}(x) = \frac{1}{hn} \# \{X_i \text{ in same bin as } x\}$$

is called the **histogram estimator**.

 $\hat{f}(x)$ is an estimate of the density at a point x.

To construct the histogram we have to choose an origin x_0 and bin width h.

Choosing Origin and Bin Width in R

Same bin width but different origin

Statistical data

What is statistical data?

- Statistical data is obtained by observing (random) variables.
- A random variable can be given a precise mathematical definition that we will cover later in the course.
- In this class we will discuss examples.

Observing a few variables on STA130 students

- What is your height?
- How many years have been at UofT?
- What is your sex (male or female)?

Collecting this data will generate three variables: height, years, and sex.

Enter variables on STA130 students

```
height <- c()
years <- c()
sex <- c()</pre>
```

Put the variables into an R data frame.

NB: data_frame is the tidyverse version of base R data.frame.

```
sta130_dat <- data_frame(height, years, sex)</pre>
```

We could have entred this in a spreadsheet program like MS Excel, saved it as a CSV file, then imported the file into R.

There are three interrelated rules which make a dataset tidy:

- 1. Each variable must have its own column.
- 2. Each observation must have its own row.
- 3. Each value must have its own cell.

Which data set is tidy?

##	#	A tibble: 6	x 4		
##		country	year	cases	population
##		<chr></chr>	<int></int>	<int></int>	<int></int>
##	1	Afghanistan	1999	745	19987071
##	2	Afghanistan	2000	2666	20595360
##	3	Brazil	1999	37737	172006362
##	4	Brazil	2000	80488	174504898
##	5	China	1999	212258	1272915272
##	6	China	2000	213766	1280428583

A tibble: 6 x 3

##		country	year	rate
##	*	<chr></chr>	<int></int>	<chr></chr>
##	1	Afghanistan	1999	745/19987071
##	2	Afghanistan	2000	2666/20595360
##	3	Brazil	1999	37737/172006362
##	4	Brazil	2000	80488/174504898
##	5	China	1999	212258/1272915272
##	6	China	2000	213766/1280428583

"For a given dataset, it is usually easy to figure out what are observations and what are variables, but it is surprisingly difficult to precisely define variables and observations in general." (Wickham, 2014)

A general rule of thumb:

- It is easier to describe functional relationships between variables (e.g., z is a linear combination of x and y, density is the ratio of weight to volume) than between rows.
- It is easier to make comparisons between groups of observations (e.g., average of group a vs. average of group b) than between groups of columns.

(Wickham, 2014)

Data wrangling

Data wrangling

- The ggplot library implements a grammer of graphics.
- Similarly the dplyr library presents a grammer for data wrangling.

The Economic Guide to Picking a Major

FiveThirtyEight

Politics Sports Science & Health Economics Culture

SEP. 12, 2014 AT 7:37 AM

....

The Economic Guide To Picking A College Major

By <u>Ben Casselman</u> Filed under <u>Higher Education</u> Get the data on <u>GitHub</u>

c .

.

....

.

"...A college degree is no guarantee of economic success. But through their choice of major, they can take at least some steps toward boosting their odds."

.....

The Economic Guide to Picking a Major

- The data used in the article is from the American Community Survey 2010-2012 Public Use Microdata Series.
- We can use the fivethirtyeight library in R.

Data behind the article

library(fivethirtyeight) # load the library
glimpse(college_recent_grads)

Observations: 173 ## Variables: 21 ## \$ rank <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,... ## \$ major code <int> 2419, 2416, 2415, 2417, 2405, 2418... ## \$ major <chr> "Petroleum Engineering", "Mining A... ## \$ major category <chr> "Engineering", "Engineering", "Eng... ## \$ total <int> 2339, 756, 856, 1258, 32260, 2573,... ## \$ sample size <int> 36, 7, 3, 16, 289, 17, 51, 10, 102... <int> 2057, 679, 725, 1123, 21239, 2200,... ## \$ men ## \$ women <int> 282, 77, 131, 135, 11021, 373, 960... <dbl> 0.1205643, 0.1018519, 0.1530374, 0... ## \$ sharewomen ## \$ employed <int> 1976, 640, 648, 758, 25694, 1857, ... ## \$ employed fulltime <int> 1849, 556, 558, 1069, 23170, 2038,... ## \$ employed parttime <int> 270, 170, 133, 150, 5180, 264, 296... ## \$ employed fulltime yearround <int> 1207, 388, 340, 692, 16697, 1449, ... ## \$ unemployed <int> 37, 85, 16, 40, 1672, 400, 308, 33... ## \$ unemployment rate <dbl> 0.018380527, 0.117241379, 0.024096... ## \$ p25th <dbl> 95000, 55000, 50000, 43000, 50000,... <dbl> 110000, 75000, 73000, 70000, 65000... ## \$ median

24/51

Select variables/columns using select()

To retrieve a data frame with only major, number of male and female graduates we use the select() function in the dplyr library.

select(college_recent_grads,major, men,women)

```
## # A tibble: 173 x 3
##
                                          major
                                                  men women
##
                                          <chr> <int> <int>
##
                          Petroleum Engineering 2057
   1
                                                        282
##
   2
                 Mining And Mineral Engineering 679
                                                        77
##
                      Metallurgical Engineering
                                                  725
   3
                                                        131
##
    4 Naval Architecture And Marine Engineering
                                                 1123
                                                        135
##
                           Chemical Engineering 21239 11021
   5
                            Nuclear Engineering 2200
## 6
                                                        373
                              Actuarial Science
##
                                                  832
   7
                                                        960
##
                     Astronomy And Astrophysics
   8
                                                2110
                                                       1667
##
                         Mechanical Engineering 12953
                                                       2105
    9
## 10
                         Electrical Engineering 8407
                                                       6548
## # ... with 163 more rows
```

Select observations/rows using filter()

If we want to retrieve only those observations (rows) that pertain to engineering majors then we need to specify that the value of the major variable is Electrical Engineering.

```
EE <- filter(college_recent_grads, major == "Electrical Engineering")
glimpse(EE)</pre>
```

##	# Observations: 1								
##	Va	ariables: 21							
##	\$	rank	<int></int>	10					
##	\$	major_code	<int></int>	2408					
##	\$	major	<chr></chr>	"Electrical Engineering"					
##	\$	major_category	<chr></chr>	"Engineering"					
##	\$	total	<int></int>	81527					
##	\$	sample_size	<int></int>	631					
##	\$	men	<int></int>	8407					
##	\$	women	<int></int>	6548					
##	\$	sharewomen	<dbl></dbl>	0.4378469					
##	\$	employed	<int></int>	61928					
##	\$	employed_fulltime	<int></int>	55450					
##	\$	employed_parttime	<int></int>	12695					
##	\$	<pre>employed_fulltime_yearround</pre>	<int></int>	41413					

Combine select() and filter()

- We can drill down to get certain pieces of information using filter() and select() together.
- The median variable is median salary.

select(filter(college_recent_grads, median >= 60000), major, men, women)

(1) Which students, and (2) variables are in this data frame?

Respond at PollEv.com/nathantaback

Text NATHANTABACK to 37607 once to join, then A, B, C, D, or E

(1) All students in the original data set; (2) all variables in the data set.	A
(1) All students in the original data set in a major where the median salary is at most than 60,000; (2) all variables in the data set.	в
(1) All students in the original data set in a major where the median salary is at least than 60,000; (2) all variables in the data set.	с
(1) All students in the original data set in a major where the median salary is at least than 60,000; (2) three variables: major, men, women	D
(1) All students in the original data set in a major where the median salary is at least than 60,000; (2) all variables in the data set.	E

The pipe operator %>%

In the code:

```
select(filter(college_recent_grads, median >= 60000), major,men,women)
```

filter is nested inside select.

The pipe operator allows is an alternative to nesting and yields easier to read code. The same expression can be written with the pipe operator

```
college_recent_grads %>%
filter(median >= 60000) %>%
select(major, men, women)
```

Create new variables from existing variables using mutate()

What percentage of graduates from each major where the median earnings is at least \$60,000 are men ?

```
college_recent_grads %>%
filter(median >= 60000) %>%
select(major, men, women) %>%
mutate(total = men + women, pct_male = round((men / total)*100, 2))
```

Compare to nested code:

Create new variables from existing variables using mutate()

major	men	women	total	pct_male
Petroleum Engineering	2057	282	2339	87.94
Mining And Mineral Engineering	679	77	756	89.81
Metallurgical Engineering	725	131	856	84.70
Naval Architecture And Marine Engineering	1123	135	1258	89.27
Chemical Engineering	21239	11021	32260	65.84
Nuclear Engineering	2200	373	2573	85.50
Actuarial Science	832	960	1792	46.43
Astronomy And Astrophysics	2110	1667	3777	55.86
Mechanical Engineering	12953	2105	15058	86.02

Create new variables from existing variables using mutate()

- Suppose that we would like to create a categorical variable to identify majors with 45% and 55% women (ie., approximately equal numbers of males and females).
- We can use ifelse() in a mutate() statement.

```
college_recent_grads %>%
  select(major, men, women) %>%
  mutate(total = men + women, pct_female = round((women / total)*100, 2),
        male.bias = ifelse(pct_female >= 45 & pct_female <= 55, "No","Yes")) %>%
  select(major,male.bias)
```

```
## # A tibble: 173 x 2
##
                                           major male.bias
##
                                           <chr>
                                                     <chr>
                          Petroleum Engineering
##
   1
                                                       Yes
                 Mining And Mineral Engineering
##
   2
                                                       Yes
##
                      Metallurgical Engineering
   3
                                                       Yes
##
   4 Naval Architecture And Marine Engineering
                                                       Yes
##
   5
                           Chemical Engineering
                                                       Yes
```

Rename variables using rename()

- It's considered bad practice in R to use periods in variable names.
- We can use rename() to change the name of sex.equal to sex_equal.

```
my_college_dat <- college_recent_grads %>%
   select(major, men, women, median) %>%
   mutate(total = men + women, pct_female = round((women / total)*100, 2),
        sex.equal = ifelse(pct_female >= 45 & pct_female <= 55, "No","Yes")) %>%
   select(major,sex.equal, median)
```

```
my_college_dat <- my_college_dat %>%
    rename(sex_equal = sex.equal, salary_median = median)
glimpse(my college dat)
```

Sort a data frame using arrange()

```
my_college_dat %>%
  arrange(salary_median) %>%
  select(major, salary_median) %>%
  arrange(desc(salary_median))
```

```
## # A tibble: 173 x 2
```

##		major	salary_median
##		<chr></chr>	<dbl></dbl>
##	1	Petroleum Engineering	110000
##	2	Mining And Mineral Engineering	75000
##	3	Metallurgical Engineering	73000
##	4	Naval Architecture And Marine Engineering	70000
##	5	Chemical Engineering	65000
##	6	Nuclear Engineering	65000
##	7	Actuarial Science	62000
##	8	Astronomy And Astrophysics	62000
##	9	Mechanical Engineering	60000
##	10	Electrical Engineering	60000
##	# .	with 163 more rows	

Summarize a data frame using summarize()

The average number of female grads and the total number of majors in the data set.

```
college_recent_grads %>%
  select(major, men, women) %>%
  summarise(femgrad_mean = mean(women), N = n())
```

A tibble: 1 x 2
femgrad_mean N
<dbl> <int>
1 22530.36 173

Summarize groups in a data frame using summarize() and group_by()

The median salary in majors with 45%-55% female students.

```
my_college_dat %>%
group_by(sex_equal) %>%
summarise(median(salary_median))
```

##	#	A tibble:	2 x 2
##		sex_equal	`median(salary_median)`
##		<chr></chr>	<dbl></dbl>
##	1	No	37400
##	2	Yes	36000

Combining Multiple Tables

Sentiment of Trump's Tweets

- Donald Trump likes to tweet a lot.
- Some tweets have an angry sentiment or contain insults, and some are not.
- Trump supposedly used to send tweets from a Samsung Galaxy when he is insulting people, places, and things, from other devices such as an iPhone when he is not.
- Trump's last tweet from Android were March 25, 2017

Trump's Tweets

```
A data frame with Trump's Tweets.
```

```
trumptweets <- read_csv("trumptweets.csv") #import from csv file
glimpse(trumptweets)</pre>
```

Observations: 53,333
Variables: 4
\$ source <chr> "Android", "Android", "Android", "Android", "Androi...
\$ created_at <dttm> 2013-02-06 01:53:40, 2013-02-06 01:53:40, 2013-02-...
\$ id_str <dbl> 2.989727e+17, 2.989727e+17, 2.989727e+17, 2.989727e...
\$ word <chr> "@sherrieshepherd", "nice", "comments", "view", "te...

Trump's tweets

```
trumptweets %>%
  count(word) %>%
  mutate(word = reorder(word,n)) %>%
  top_n(20) %>%
  ggplot(aes(word, n)) + geom_col() + coord_flip() +
  labs(x = "Word",y = "Number of times word ocurres in a Tweet")
```


Sentiment Lexicon

- Several lexicons (dictionaries) have been developed that categorize words according to sentiment (feeling or emotion).
- The tidytext library contains several lexicons.

library(tidytext)
sentiments

A tibble: 27,314 x 4

##		word	sentiment	lexicon	score
##		<chr></chr>	<chr></chr>	<chr></chr>	<int></int>
##	1	abacus	trust	nrc	NA
##	2	abandon	fear	nrc	NA
##	3	abandon	negative	nrc	NA
##	4	abandon	sadness	nrc	NA
##	5	abandoned	anger	nrc	NA
##	6	abandoned	fear	nrc	NA
##	7	abandoned	negative	nrc	NA
##	8	abandoned	sadness	nrc	NA
##	9	abandonment	anger	nrc	NA
##	10	abandonment	fear	nrc	NA
##	# .	with 27,3	304 more ro	DWS	

NRC Lexicon

- The nrc lexicon categorizes words in a binary fashion ("yes"/"no") into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust.
- The getsentiments() function provides a way to get specific sentiment lexicons without the columns that are not used in that lexicon.

NRC Lexicon

get_sentiments("nrc")

A tibble: 13,901 x 2 ## word sentiment ## <chr> <chr> ## abacus 1 trust ## 2 abandon fear ## 3 abandon negative ## abandon 4 sadness abandoned ## 5 anger ## 6 abandoned fear ## 7 abandoned negative ## 8 abandoned sadness 9 abandonment ## anger ## 10 abandonment fear ## # ... with 13,891 more rows

Sentiment of Words used in Tweets

- To examine the sentiment of the words Trump used in tweets we need to join the data frame containing the NRC lexicon and the data frame of Trump's words used in tweets.
- inner_join(x,y): return all rows from x where there are matching values in y, and all columns from x and y. If there are multiple matches between x and y, all combination of the matches are returned.

trumptweets %>% inner_join(get_sentiments("nrc"))

```
## # A tibble: 33,043 x 5
```

##		source	Cl	reated_at	id_str	word	sentiment
##		<chr></chr>		<dttm></dttm>	<dbl></dbl>	<chr></chr>	<chr></chr>
##	1	Android	2013-02-06	01:53:40	2.989727e+17	terrific	sadness
##	2	Android	2013-02-18	23:36:36	3.036492e+17	sky	positive
##	3	Android	2013-02-18	23:36:36	3.036492e+17	rocket	anger
##	4	Android	2013-02-18	23:36:36	3.036492e+17	payback	anger
##	5	Android	2013-02-18	23:36:36	3.036492e+17	payback	negative
##	6	Android	2013-02-19	00:25:48	3.036616e+17	surprised	surprise
##	7	Android	2013-02-19	12:36:19	3.038455e+17	buss	joy
##	8	Android	2013-02-19	12:36:19	3.038455e+17	buss	positive
##	9	Android	2013-02-19	12:36:19	3.038455e+17	friend	joy

Sentiment of Words used in Tweets

```
trumptweets %>%
inner_join(get_sentiments("nrc")) %>%
group_by(sentiment,source) %>%
summarise(n=n()) %>%
mutate(pct= round(n/sum(n)*100,2)) %>%
arrange(desc(pct))
```

##	# 1	A tibble: 20 3	ĸ 4		
##	# (Groups: sent	timent []	L0]	
##		sentiment	source	n	pct
##		<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>
##	1	disgust	Android	1537	80.68
##	2	negative	Android	4040	78.68
##	3	sadness	Android	2117	78.32
##	4	anger	Android	2228	78.31
##	5	fear	Android	2057	77.80
##	6	surprise	Android	1297	72.70
##	7	joy	Android	1777	71.65
##	8	anticipation	Android	2240	71.25
##	9	positive	Android	4328	69.72
##	10	trust	Android	2924	69.70
##	11	trust	iPhone	1271	30.30

Sentiment of Words used in Tweets

Join two tables together

- In the dplyr library there are several other ways to join tables: left_join(), right_join(), full_join(), semi_join(), anti_join().
- See dplyr documentation.

Transforming data

Statistical Transformations

- In statistical analysis it's often necessary to transform data.
- Transforming data takes each value of a variable x_i and transforms it into $f(x_i)$:

$$x_i \mapsto f(x_i).$$

- Common transformations include: $f(x) = \ln(x)$, and $f(x) = x^p$, $p \in \mathbb{R}$. For example, if p = 1/2 then f is the square-root transformation.

Logarithmic transformation

• Logarithmic transformation refers to the natural logarithm:

$$y = \log_e(x) \iff \exp(y) = e^y = x$$

Transforming Variables in R

The relationship between Salary (median) and percentage of male graduates.

Transforming Variables in R

The same plot but on the log-log scale.

```
college_recent_grads %>%
  mutate(log_men = log(men / total), log_salary = log(median)) %>%
  ggplot(aes(x = log_men, y = log_salary)) + geom_point()
```

