
STA130 - Class #3: How R You?
Nathan Taback

2018-01-22



Today's Class

RStudio user interface

R Objects

R Functions

R Scripts

R Packages

R Lists

R Notation

R Missing Data

dplyr

·

·

·

·

·

·

·

·

·

2/47



Announcements

Mark

Attendance for the entire tutorial 1

Assigned homework completiona 1

In-class exercises 4

Total 6

Tutorial grades will be assigned according to the following marking scheme.·

You will learn about the mentorship program in this week's tutorial (3% of final grade).·

3/47



RStudio User Interface

4/47

Or / oo
won't

@

00000



R Objects

R lets you save data by storing it inside an R object.

What’s an object? Just a name that you can use to call up stored data.

·

·

x <- 1
x

## [1] 1

5/47



Environment Pane in RStudio

When you create an object, the object will appear in the environment pane of RStudio.·

6/47

O



Functions

R comes with many functions that you can use to do sophisticated tasks like random sampling.

For example, you can round a number with the round function round(), or calculate its absolute value
with abs().

Write the name of the function and then the data you want the function to operate on in parentheses:

·

·

·

round(-2.718282, 2)

## [1] -2.72

abs(-5)

## [1] 5

abs(round(-2.718282, 2))

## [1] 2.72

7/47

← Abs ( x )

¥ / xk
X

, KZO

- Rounds the {x , xao

number

then takes
the result

and Calculates absolute Value .

( f. g) ( so ) = f(geD



Function Constructor

Every function in R has three basic parts: a name, a body of code, and a set of arguments.·

To make your own function, you need to replicate these parts and store them in an R object, which you
can do with the function function.

·

To do this, call function() and follow it with a pair of braces, {}: my_function <- function() {}·

8/47

my . function ← function C ) {
x← 1

x

3

my - function C 1



Function Constructor

We can simulate rolling a pair of dice and adding the result with the code:·

die <- 1:6
dice <- sample(die, size = 2, replace = TRUE) 
sum(dice)

## [1] 9

9/47

# Ii 23,41516
D

die ← C @43141516 )

t.am?koEnsiItFa'#eaEY
2 ,

12
two Values

.1,1 616

Draw # Value

1 6

2 6 is Still possible ; replace = True
.

Rd
If replace = False then(
only 42

, } , 4,5 are possible



Function Constructor

Call the function roll()

We can create our own function with·

roll <- function() {
  die <- 1:6
  dice <- sample(die, size = 2, replace = TRUE) 
  sum(dice)
}

roll() # call the function.  NB: result will differ with every call

## [1] 4

10/47

My . function ← function ( ) {→ 6

}



Function Arguments

Instead of rolling one die consider rolling four or ten dice then adding the results of all the rolls together.

numrolls is called an argument of the function roll2().

Let's simulate rolling ten dice and adding the results together.

roll2 <- function(numrolls) { # x is the argument of the function roll2
  die <- 1:6
  dice <- sample(die, size = numrolls, replace = TRUE) # the size of the sample 
  sum(dice) # add up the roll results
}

roll2(10)

## [1] 40

11/47

thump



Scripts

If we want to edit the function roll2() then we will want to save it in a script.

To do this in RStudio File > New File > R script in the menu bar.

·

·

12/47

O
'



Packages

You’re not the only person writing your own functions with R.

Many professors, programmers, and statisticians use R to design tools that can help people analyze
data.

They then make these tools free for anyone to use.

To use these tools, you just have to download them. They come as preassembled collections of
functions and objects called packages.

We have already used two packages ggplot2 and dplyr.

·

·

·

·

·

13/47



Packages

To install the package tidyverse in RStudio go to the Packages tab in RStudio and click Install.

To load a package type

library(tidyverse)

14/47



RStudio IDE

IDE: Integrated Development Environment.

The RStudio IDE has many features that we will not use in the course.

·

·

The console is where you can type an R command at the prompt and the result is returned.

Write code in an R script, R Markdown document, or R Notebook.

Run a script or R chunks from an R Markdown or R Notebook by pushing the run button in the chunk.

·

·

·

15/47



R Objects

R stores data in objects such as vectors, arrays, and matricies.

In most applications we will ususally load data from an external file.

·

·

16/47

dim =3 ( X , y ,z)
( 11211 )

dim ,

@ 1 2)

dim -1 2C

= >

qz;it a#Ly
.



R Objects - Atomic Vectors

You can make an atomic vector by grouping some values of data together with c:

die<-c(1,2,3,4,5,6) 
die

## [1] 1 2 3 4 5 6

is.vector(die)

## [1] TRUE

length(die)

## [1] 6

17/47

=

←

←



R Objects - Atomic Vectors

You can also make an atomic vector with just one value. R saves single values as an atomic vector of
length 1:

two <- 2 
two

## [1] 2

18/47



R Objects - Atomic Vectors: Integer and Character

Each atomic vector can only store one type of data. You can save different types of data in R by using
different types of atomic vectors.

R recognizes six basic types of atomic vectors: doubles, integers, characters, logicals, complex, and raw.

We will not be using complex or raw types in STA130.

Integer vectors included a capital L with input, and character vectors have input surounded by
quotation marks.

·

·

·

·

19/47

IF

⇒ Hers and

other
TRUE Characters

.

FALSE



R Objects - Atomic Vectors: Integer and Character

mynums <- c(2L,3L)
courses <- "STA130"
courses <- c("STA130", "MAT137")
sum(mynums)

## [1] 5

sum(courses)

## Error in sum(courses): invalid 'type' (character) of argument

sum(courses == "STA130")

## [1] 1

20/47

✓

makes sense .



R Objects - Double Vectors

A double vector stores real numbers. Doubles are often called numerics.·

die <- c(1,2,3,4,5,6)
typeof(die)

## [1] "double"

21/47

.



R Objects - Logical Vectors

Logical vectors store TRUEs and FALSEs, R’s form of Boolean data. Logicals are very helpful for doing
things like comparisons:

·

3 > 4

## [1] FALSE

TRUE or FALSE in capital letters (without quotation marks) will be treated as logical data. R also
assumes that T and F are shorthand for TRUE and FALSE.

·

logic <- c(TRUE, FALSE, TRUE) 
logic

## [1]  TRUE FALSE  TRUE

22/47

4>3

TRUE



R Objects - Atomic Vectors: dim()

You can transform an atomic vector into an n-dimensional array by giving it a dimen‐ sions attribute with
dim.

R always fills up each matrix by columns, instead of by rows unless you use matrix() or array().

die <- c(1,2,3,4,5,6)
dim(die) <- c(2,3) # a 2x3 matrix
die 

##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6

die <- c(1,2,3,4,5,6)
dim(die) <- c(3,2) # a 3x2 matrix
die 

##      [,1] [,2]
## [1,]    1    4
## [2,]    2    5
## [3,]    3    6

23/47

/ matrix

LIrowFcdmnsi@ay.aa
"u]

Throws

3C . "

Ag
. ( sttevabem=\

> notice the

↳ rows
notation ! b theith Column and

acols . jthrow .



Factors

Factors are R’s way of storing categorical information, like ethnicity or eye color.

A factor as something like sex since it can only have certain values.

Factors very useful for recording the treatment levels of a categorical variable.

·

·

·

sex <- factor(c("male", "female", "female", "male"))
typeof(sex)

## [1] "integer"

unclass(sex) # shows how R is storing the factor vector 

## [1] 2 1 1 2
## attr(,"levels")
## [1] "female" "male"

24/47

- Sex =
a

, efsex="male
"

{ 1 , if sex=" female "



Coercion

R always follows the same rules when it coerces data types. Once you are familiar with these rules, you
can use R’s coercion behavior to do surprisingly useful things.

For example sum(c(TRUE, TRUE, FALSE, FALSE)) will become sum(c(1, 1, 0, 0)).

sum(c(TRUE, TRUE, FALSE, FALSE))

## [1] 2

25/47

1 →
"

1
"

( )



Lists

Lists are like atomic vectors because they group data into a one-dimensional set.

Lists do not group together individual values.

Lists group together R objects, such as atomic vectors and other lists.

For example, you can make a list that contains a numeric vector of length 31 in its first element, a
character vector of length 1 in its second element, and a new list of length 2 in its third element.

·

·

·

·

list1 <- list(1:31, "Prof. Taback", list(TRUE, FALSE))
list1

## [[1]]
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
## [24] 24 25 26 27 28 29 30 31
## 
## [[2]]
## [1] "Prof. Taback"
## 
## [[3]]
## [[3]][[1]]
## [1] TRUE
## 
## [[3]][[2]]
## [1] FALSE

26/47

p p D
- place in list

( nE¥ta¥
,

" "

IT?
.

, ,

part of list .

place within the element of 1
, st .



Data Frames

Data frames are the two-dimensional version of a list.

They are the most useful storage structure for data analysis

A data frame is R’s equivalent to the Excel spreadsheet because it stores data in a similar format.

·

·

·

27/47



Data Frames

Data frames group vectors together into a two-dimensional table.

Each vector becomes a column in the table.

As a result, each column of a data frame can contain a different type of data; but within a column,
every cell must be the same type of data.

·

·

·

28/47



Data Frames

student_num <- c(1, 2, 3, 4)
name <- c("Nadia", "Shiyi", "Yizhe", "Wei")
mydat <- data.frame(obsnum = student_num, student_name = name)
mydat

##   obsnum student_name
## 1      1        Nadia
## 2      2        Shiyi
## 3      3        Yizhe
## 4      4          Wei

Creating a data frame by hand takes a lot of typing, but you can do it with the data.frame() function.

Give data.frame() any number of vectors, each separated with a comma.

Each vector should be set equal to a name that describes the vector.

data.frame() will turn each vector into a column of the new data frame.

·

·

·

·

29/47

%
rename the variable Student

. num

to obsnum



Data Frames

You can view a data frame in RStudio by clicking on the data frame name in the Environment tab

30/47

O



R Notation - [ , ]

To extract a value or set of values from a data frame, write the data frame’s name followed by a pair of
square brackets with a comma [ , ].

·

mydat[ , ]

31/47



R Notation - [ , ]

mydat

##   obsnum student_name
## 1      1        Nadia
## 2      2        Shiyi
## 3      3        Yizhe
## 4      4          Wei

mydat[1,2] # the value in row 1 and column 2

## [1] Nadia
## Levels: Nadia Shiyi Wei Yizhe

mydat[c(1,2),2] # all values in rows 1 and 2 in second column

## [1] Nadia Shiyi
## Levels: Nadia Shiyi Wei Yizhe

32/47

[ i$j ]

[ ] mydatceiz ]⇐→ " ± " " * " " * " "g-this is a vector .

- this is a vector

.



R Notation - $

The $ tells R to return all of the values in a column as a vector.

mydat$student_name

## [1] Nadia Shiyi Yizhe Wei  
## Levels: Nadia Shiyi Wei Yizhe

vec <- mydat$student_name # assign it to vec
attributes(vec) # info associated with object vec

## $levels
## [1] "Nadia" "Shiyi" "Wei"   "Yizhe"
## 
## $class
## [1] "factor"

vec[2] # get second element of vector

## [1] Shiyi
## Levels: Nadia Shiyi Wei Yizhe

33/47

- returns Col .  of Student names

as a vector .

-



R Notation - combine [,] and $

mydat[mydat$obsnum == 1,] # first row of data frame and all columns

##   obsnum student_name
## 1      1        Nadia

mydat[mydat$obsnum == 1 | mydat$obsnum == 4 ,] # first and fourth rows of data frame and all columns

##   obsnum student_name
## 1      1        Nadia
## 4      4          Wei

34/47

\& -
first row =1 .

all

Coly
no

Col .
is Specified

0
So all cols .

returned .

\
or operator -

P



Missing Data - NA

Missing information problems happen frequently in data science.

For example a value is mising because the measurement was lost, corrupted, or never recorded.

The NA character is a special symbol in R. It stands for “not available” and can be used as a placeholder
for missing information.

·

·

·

1 + NA

## [1] NA

35/47



Missing Data - na.rm()

Suppose you collected the ages of five students, but you forgot to record the fifth students age.·

age <- c(19, 20, 17, 20, NA)
mean(age) # mean will be NA

## [1] NA

age <- c(19, 20, 17, 20, NA)
mean(age, na.rm = TRUE) # R will ignore missing values

## [1] 19

36/47

$ this is an option in the

mean function removes

missing values then

calculates the mean .



Identify and Set Missing Data - is.na()

age <- c(19, 20, 17, 20, NA)
is.na(age) # check which elements of age are missing

## [1] FALSE FALSE FALSE FALSE  TRUE

age[1] <- NA # set the first element of age to NA
age

## [1] NA 20 17 20 NA

37/47

0



Summary of R Data Structures

38/47

r

:

did not Cover .

obn it worry .



Tidyverse

https://www.tidyverse.org

39/47

o



Canadian Flu Rates with dplyr

The provincial rates for the week ending January 6, 2018 are in the file fludat_prov.csv and the the size of
the population in each province is in the file popdat.csv. The code below reads the files into R data
frames.

library(tidyverse)
fludat_prov <- read_csv("fludat_prov.csv") # import data from file
popdat <- read_csv("popdat.csv") # import data from file

40/47



Canadian Flu Rates with dplyr

head(fludat_prov) # head shows the first six rows of a data frame

## # A tibble: 6 x 3
##   prov                 testpop_size  fluA
##   <chr>                       <int> <int>
## 1 Newfoundland                   96    12
## 2 Prince Edward Island           64    11
## 3 Nova Scotia                   144    23
## 4 New Brunswick                 347    80
## 5 Province of Québec           6361  1190
## 6 Province of Ontario          2320   344

head(popdat)

## # A tibble: 6 x 3
##   prov             prov_pop_size region     
##   <chr>                    <int> <chr>      
## 1 Nunavut                  35944 Territories
## 2 Alberta                4067175 <NA>       
## 3 Saskatchewan           1098352 West       
## 4 Yukon                    35874 Territories
## 5 Manitoba               1278365 West       
## 6 British Columbia       4648055 West

41/47

- this function is in the dplyr lib

,
# of people tested for flu

- # of people
that tested +

for flu .

rate in New foulard

12/96

-
Size

of population in

prove
- Region name .



Canadian Flu Rates with dplyr

How many Provinces/Territories are in the fludat_prov data frame?

fludat_prov %>% summarise(numprov = n()) # n() counts the number of rows in the data frame

## # A tibble: 1 x 1
##   numprov
##     <int>
## 1      13

42/47

;Summarise ( fludatprov , numprovyngc
)

13 rows this is

in dater frame
. afunctrm

that

Counts
# of rows

Ln data frame .



Canadian Flu Rates with dplyr

Do any variables in fludat or popdat have missing values?

fludat_prov %>% filter(is.na(prov) == TRUE | is.na(testpop_size) == TRUE | is.na(fluA) == TRUE) 

## # A tibble: 0 x 3
## # ... with 3 variables: prov <chr>, testpop_size <int>, fluA <int>

popdat %>% filter(is.na(prov) == TRUE | is.na(prov_pop_size) == TRUE | is.na(region) == TRUE) 

## # A tibble: 2 x 3
##   prov    prov_pop_size region
##   <chr>           <int> <chr> 
## 1 Alberta       4067175 <NA>  
## 2 Quebec        8164361 <NA>

43/47

O o 's no missing values
.

try doing this using [
, ] ,

$ notation !

-

two Prov
. have

missing values
.



Canadian Flu Rates with dplyr

Recode specific values using R data frame notation [,] and $.

popdat$region[popdat$prov == "Alberta"] <- "West" #recode only the region value for Alberta
popdat$region[popdat$prov == "Quebec"] <- "East" #recode only the region value for Alberta
popdat$region #print region variable in popdat data

##  [1] "Territories" "West"        "West"        "Territories" "West"       
##  [6] "West"        "East"        "East"        "Atlantic"    "Atlantic"   
## [11] "Territories" "Atlantic"    "Atlantic"

44/47



Canadian Flu Rates with dplyr - Joining Two

Tables with inner_join()

We can join two data frames with inner_join(x,y): return all rows from x where there are matching
values in y, and all columns from x and y. If there are multiple matches between x and y, all combination
of the matches are returned.

Why are there only 9 observations when there are 13 Provinces/Territories?

fludat_prov %>% inner_join(popdat, by = "prov")

## # A tibble: 9 x 5
##   prov                  testpop_size  fluA prov_pop_size region     
##   <chr>                        <int> <int>         <int> <chr>      
## 1 Newfoundland                    96    12        519716 Atlantic   
## 2 Prince Edward Island            64    11        142907 Atlantic   
## 3 Nova Scotia                    144    23        923598 Atlantic   
## 4 New Brunswick                  347    80        747101 Atlantic   
## 5 Manitoba                       849   186       1278365 West       
## 6 British Columbia              1078   198       4648055 West       
## 7 Yukon                           15     1         35874 Territories
## 8 Northwest Territories           28    10         41786 Territories
## 9 Nunavut                         18     1         35944 Territories

45/47

O
- oniyq



Canadian Flu Rates with dplyr - Joining Two

Tables with inner_join()

Province needs to be recoded. Exercise on this week's practice problems.

fludat_prov$prov

##  [1] "Newfoundland"             "Prince Edward Island"    
##  [3] "Nova Scotia"              "New Brunswick"           
##  [5] "Province of Québec"       "Province of Ontario"     
##  [7] "Manitoba"                 "Province of Saskatchewan"
##  [9] "Province of Alberta"      "British Columbia"        
## [11] "Yukon"                    "Northwest Territories"   
## [13] "Nunavut"

popdat$prov

##  [1] "Nunavut"               "Alberta"              
##  [3] "Saskatchewan"          "Yukon"                
##  [5] "Manitoba"              "British Columbia"     
##  [7] "Ontario"               "Quebec"               
##  [9] "Prince Edward Island"  "Newfoundland"         
## [11] "Northwest Territories" "Nova Scotia"          
## [13] "New Brunswick"

46/47

÷



Canadian Flu Rates with dplyr - Joining Two

Tables with inner_join()

47/47

000

In
excluded

-


