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Today

Big idea:

We estimate a characteristic of a population from incomplete, imperfect observed
data.
What is a range of plausible values for what it could actually be?

Important concepts:

1. Percentiles

2. Population parameters and sample statistics to estimate them

3. Sampling distribution

4. Bootstrap sampling distribution

5. Confidence intervals
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Recommended reading:

Sections 7.1, 7.2, 7.3 of Modern Data Science with R 
(You can safely ignore any mention of standard error or standard deviation.)
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Some necessary background: 
Percentiles



Percentiles

We are often interested in the values of a numerical variable after they've been
sorted in increasing or decreasing order.

Definition of percentile for a numerical variable:
For  a number between 0 and 100, the th percentile is the the smallest value
that is at least as large as % of all of the values.

Percentiles are calculated in R with the quantile function.

p p
p

When a percentile lies between two data values, there are various ways to
interpolate between them to estimate the percentile.

You can see the default method for how R does this in the help for the
quantile function, but you are not responsible for knowing these details.

You are responsible for interpreting a percentile that has been calculated in R,
but not for calculating it yourself.

·

·

·
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A question:

Suppose your score on a test is the 95th percentile of the class. Did you do well
or not well compared to the rest of the class?
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Example:

Scores on a test for a class of 10 students: 70, 55, 90, 67, 76, 92, 71, 82, 85, 79

Sorted scores: 55, 67, 70, 71, 76, 79, 82, 85, 90, 92

marks <- c(70, 55, 90, 67, 76, 92, 71, 82, 85, 79)
quantile(marks, 0.5)  # the 50th percentile

##  50% 
## 77.5

quantile(marks, 0.8)  # the 80th percentile

## 80% 
##  86

7/61

-
.  .

. . .

.  

pth
- -

Is
'

It . middle 2 values

-

- interpolated



Some particular percentiles:

quantile(marks, c(0.5, 0.8))  # the 50th and the 80th percentile

##  50%  80% 
## 77.5 86.0

median: the 50th percentile

first quartile: the 25th percentile

third quartile: the 75th percentile

·

·

·
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Inferential Thinking for Estimation



Statistical Inference

Imagine we have a real world where we observe data, and a theoretical world (a
population or scientific model) that we want to make conclusions about.

Inference connects what we observe in the real world to what we can say
about the theoretical world.

Last two weeks: The null hypothesis gave us a model for the theoretical world.

Today: No hypotheses that presume something about the theoretical world.

·

·

·

·
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Populations and samples

A population is a complete collection of individuals that we are interested in.

A sample is a subset of a population.

We want to understand something about the population (our theoretical
world).

We can't measure every individual in the population because we don't have
the time or the money.

So we measure a sample (the real world).

A good sample is chosen randomly to esnure it is representative of the
population.

·

·

·

·

·

·
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Parameters and statistics

A question:

Since the values of the estimate vary from sample to sample, what are the possible
values this estimate might have been?

Recall: A parameter is a numerical value associated with the theoretical world.

If we have the relevant data for the entire population, we can simply calculate
the parameter.

In most situations we only have data collected from a random sample.

We estimate the value of a parameter from the data.

A statistic is an estimate of the parameter, calculated from the data.

Every random sample drawn from the population will give a different value of
the statistic.

·

·

·

·

·

·
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Sampling distributions



Sampling from a population

To demonstrate the idea of sampling distribution, we'll consider the unrealistic
scenario where we are examining samples of observations from a population
and we have all the data in the population.

This artificial situation allows us to examine what possible values we could get
for an estimate of a parameter from various possible samples.

·

·
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Example: 
2013 flights from New York to San Francisco

The population:

All flights leaving New York for San Francisco (airport code: SFO) in 2013.

We'll store these in a data frame called SF.

We're interested in the numerical variable arr_delay.

library(tidyverse)
library(nycflights13)
SF <- flights %>% filter(dest == "SFO", !is.na(arr_delay))
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Some values calculated from our population

Are these parameters or statistics?

SF %>% summarize(mean_delay=mean(arr_delay), median_delay=median(arr_delay), 
                 max_delay=max(arr_delay), perc98_delay=quantile(arr_delay, 0.98))

## # A tibble: 1 x 4
##   mean_delay median_delay max_delay perc98_delay
##        <dbl>        <dbl>     <dbl>        <dbl>
## 1   2.672892           -8      1007          153
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Samples of size 25

Now suppose we only have a random sample of 25 observations (25 flights) from
our population.

The function sample_n in dplyr can be used to draw samples.
The default is sampling without replacement – so we'll get a sample of 25
different flights.

sample25 <- SF %>% sample_n(size = 25)  # sample of 25 flights from our population 
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Some values calculated from our sample

Are these parameters or statistics?

sample25 %>% summarize(mean_delay=mean(arr_delay), median_delay=median(arr_delay), 
                       max_delay=max(arr_delay), perc98_delay=quantile(arr_delay, 0.98))

## # A tibble: 1 x 4
##   mean_delay median_delay max_delay perc98_delay
##        <dbl>        <dbl>     <dbl>        <dbl>
## 1      -4.32           -7        50        44.72
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Another sample of size 25

sample25 <- SF %>% sample_n(size = 25)

sample25 %>% summarize(mean_delay=mean(arr_delay), median_delay=median(arr_delay), 
                       max_delay=max(arr_delay), perc98_delay=quantile(arr_delay, 0.98))

## # A tibble: 1 x 4
##   mean_delay median_delay max_delay perc98_delay
##        <dbl>        <dbl>     <dbl>        <dbl>
## 1         -2           -5       101        89.96

20/61

- -

molcmnfhe extremes
vatyf

wasFonteyn



And another sample of size 25

sample25 <- SF %>% sample_n(size = 25)

sample25 %>% summarize(mean_delay=mean(arr_delay), median_delay=median(arr_delay), 
                       max_delay=max(arr_delay), perc98_delay=quantile(arr_delay, 0.98))

## # A tibble: 1 x 4
##   mean_delay median_delay max_delay perc98_delay
##        <dbl>        <dbl>     <dbl>        <dbl>
## 1       -1.8           -9        53        49.64
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Sampling distribution of the mean

The sampling distribution of the mean of arr_delay is the distribution of all of
the values that mean_delay can be for random samples of size 25.

To explore the sampling distribution, let's look at 500 values of mean_delay,
calculated from 500 possible random samples of size 25.

sample_means <- rep(NA, 500)  # where we'll store the means
 
for (i in 1:500)
{
  sample25 <- SF %>% sample_n(size = 25)
  sample_means[i] <- as.numeric(sample25 %>% summarize(mean(arr_delay)))
}

sample_means <- data_frame(mean_delay=sample_means)
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ggplot(sample_means, aes(x=mean_delay)) + geom_histogram(binwidth=5) + 
  labs(x="Means from samples of size 25", 
       title="Sampling distribution for the mean of arr_delay")
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The sampling distribution of the mean of
arr_delay

For a sample size of 25 observations, the sampling distribution of the mean of
arr_delay:

Has one mode

The mode is near the mean for the population (2.67)

Is slightly right-skewed

Values range from about -20 to 50 but most values are between -10 and 15

·

·

·

·
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What if our sample size was 100?

sample_means100 <- rep(NA, 500)  # where we'll store the means
for (i in 1:500)
{
  sample100 <- SF %>% sample_n(size = 100)
  sample_means100[i] <- as.numeric(sample100 %>% summarize(mean(arr_delay)))
}
sample_means100 <- data_frame(mean_delay=sample_means100)
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How the sampling distribution of the mean
differs with sample size

Comparing the sampling distribution of the mean of arr_delay for samples of
size 25 and size 100:

Both sampling distributions have a single mode at the same value
(approximately).

There is less variability in the values of the mean for samples of size 100 than
for samples of size 25.

The distribution of the mean for samples of size 100 is less right-skewed
(more symmetric) than the distribution of the mean for samples of size 25.

·

·

·
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A reality check

What if we only have sample data from one sample and not the population?
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The Bootstrap



Resampling from the sample

Use resampling in the real world situation where all we have is a dataset that
is one sample from the population.

Treat the observed sample of data as a good representation of the population.

Resample from the observed data: sample with replacement, with samples the
same size as the observed data. These are bootstrap samples.

If the data resemble the population, the bootstrap samples will also resemble
the population.

Note that the bootstrap doesn't create new data. It works when our sample
data is a reasonable representation of the population.

·

·

·

·

·
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The bootstrap sampling distribution

For each bootstrap sample, a statistic can be calculated to estimate a
parameter from the population.

The distribution of the values of the statistic for all bootstrap samples is the
bootstrap sampling distribution. It gives us an estimate of the sampling
distribution of the statistic.

·

·
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Suppose we do not observe the population.
We have observed a sample of size 200.

Here it is:

We're still interested in the mean of arr_delay.

Here is the mean of arr_delay for our observed data:

Is this a parameter or a statistic?

observed_data <- SF %>% sample_n(size = 200, replace = FALSE)

observed_mean <- as.numeric(observed_data %>% summarize(mean(arr_delay)))
observed_mean

## [1] 0.285
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A bootstrap sample from our data

boot_samp <- observed_data %>% sample_n(size = 200, replace=TRUE)

boot_samp %>% summarize(mean_delay=mean(arr_delay))

## # A tibble: 1 x 1
##   mean_delay
##        <dbl>
## 1      -5.07
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Another bootstrap sample

boot_samp <- observed_data %>% sample_n(size = 200, replace=TRUE)

boot_samp %>% summarize(mean_delay=mean(arr_delay))

## # A tibble: 1 x 1
##   mean_delay
##        <dbl>
## 1      3.255
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5000 bootstrap samples

Typically need lots of replications when bootstrapping.

How many? Typically at least 1000.
As with all simulations, results vary.
You can experiment with how many replications are needed to give stable
estimates to the desired accuracy.

boot_means <- rep(NA, 5000)  # where we'll store the means
 
for (i in 1:5000)
{
  boot_samp <- observed_data %>% sample_n(size = 200, replace=TRUE)
  boot_means[i] <- as.numeric(boot_samp %>% summarize(mean(arr_delay)))
}

boot_means <- data_frame(mean_delay=boot_means)
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Where is the centre of the distribution? Does this make sense?

ggplot(boot_means, aes(x=mean_delay)) + geom_histogram(binwidth=2) + 
  labs(x="Means from bootstrap samples", 
       title="Bootstrap distribution for the mean of arr_delay")
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Do the bootstrap estimates capture the
population parameter?

Remember the value of the population mean:

population_mean <- SF %>% summarize(population_mean_delay=mean(arr_delay))
population_mean

## # A tibble: 1 x 1
##   population_mean_delay
##                   <dbl>
## 1              2.672892
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ggplot(boot_means, aes(x=mean_delay)) + geom_histogram(binwidth=2) + 
  geom_dotplot(data=population_mean, aes(x=population_mean_delay), fill="red") +
  labs(x="Means from bootstrap samples", 
       title="Bootstrap distribution for the mean of arr_delay")
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Based on the bootstrap distribution, what other
population values of the mean might be
plausible?

In the real world we observe our sample of data, we can construct the
bootstrap sampling distribution of the mean, and we don't know the
population mean.

We'd like to make inferences about the population, such as what other
population values of the mean might be plausible?

To answer this, look at the range of values that the bootstrap distibution
covers, but exclude the values way out in the tails.

Typically, we take the middle 95% of the bootstrap distribution of resampled
means.

These are values from the 2.5th percentile to the 97.5th percentile.

·

·

·

·

·
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2.5th and 97.5th percentiles:

quantile(boot_means$mean_delay, c(0.025, 0.975))

##     2.5%    97.5% 
## -5.14000  5.98525
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Will this procedure always give an interval that
captures the population mean?

Our interval that is the middle 95% of our bootstrap distribution is (-5.14, 5.99). It
includes the population mean (2.673).

To see how often an interval calculated this way from a sample of size 200 would
capture the population mean, we can take advantage of the situtation here
where we have the population and repeat this procedure many times. We can:

1. Randomly draw another data sample of size 200 from the population.

2. Find the bootstrap sampling distribution of the mean from 5000 replications
of bootstrap samples of this new data.

3. Find the interval that is the middle 95% of the bootstrap distribution.

4. Repeat 1. to 3. 100 times.
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Statistical theory says that these intervals should capture the population mean
95% of the time.
These are called 95% confidence intervals for the mean.

To see if this holds:

Code to calculate 100 bootstrap confidence intervals for the mean of arr_delay,
each calculated from a random sample from the population of size 200, is in the
R markdown document for this lecture. Note that it takes a while to run.
Results are on the next slide…

Need to know the population mean

Need to take a number of random samples, each representing a possible
dataset

Need to calculate bootstrap intervals for the mean for each dataset

Need to check how many of these confidence intervals contain the population
mean

·

·

·

·
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100 bootstrap confidence intervals for the mean, each calculated from a random
sample from the population of size 200

How many of the confidence intervals capture the population mean?
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Each of these confidence intervals gives a range of plausible values for what
our parameter might be. This range is based on the incomplete and imperfect
information we have in each set of data.

A "good" interval captures the population mean.

Since our intervals are the middle 95% of the bootstrap sampling distribution
of the mean, we expect that 95% will be "good".

Sometimes, because of chance, our randomly sampled data leads to a
confidence interval that does not capture the population mean. We expect
that this will happen for 95% of datasets.

·

·

·

·
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Confidence Intervals



What is a confidence interval?

A 95% confidence interval for a population parameter is calculated from sample
data in such a way that the interval will include the parameter for 95% of
possible samples.

95% is the confidence level.

90% and 99% confidence intervals are also common.

[Note: A comment in your textbook near the bottom of page 153 that you can
ignore, along with all references to standard error and standard deviation: As
taught in introductory statistics courses, often a 95% confidence interval is calculated
from the mean and standard error of the sampling distribution.
You'll learn the theory behind this statement in your second year statistics
courses.]
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How to calculate a bootstrap confidence interval

1. Take a bootstrap sample of the data by sampling with replacement, the same
number of observations as the original data.

2. For the bootstrap sample, calculate the statistic that estimates the parameter
you are interested in.

3. Repeat steps 1. and 2. many times to get a distribution of bootstrap statistics.

4. A 95% confidence interval for the parameter is the middle 95% of values of
the bootstrap statistics.
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Example from Week 4:

Kissing the Right Way

Güntürkün (2003) recorded the direction kissing couples tilted their heads.

Of the 124 couples he observed, 80 turned their heads to the right.

64.5% of couples in Güntürkün's sample tilted their heads to the right.

Today: Find a 95% confidence interval for the proportion of all couples who tilt
their heads to the right when they kiss.

·

·

·

·

# Create a data frame
direction <- c( rep("right", 80), rep("left", 124-80) )
kissdata <- data_frame(direction)
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Bootstrap distribution for the proportion of couples who tilt their heads to

the right when they kiss

boot_p <- rep(NA, 5000)  # where we'll store the bootstrap proportions
 
for (i in 1:5000)
{
  boot_samp <- kissdata %>% sample_n(size = 124, replace=TRUE)
  boot_p[i] <- as.numeric(boot_samp %>% filter(direction == "right") %>% 
                            summarize(n()))/124
}

boot_p <- data_frame(boot_p)
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ggplot(boot_p, aes(x=boot_p)) + geom_histogram(binwidth=0.02) + 
  labs(x="Proportions from bootstrap samples",
    title="Bootstrap distribution of proportion who kiss right")
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A 95% confidence interval for the proportion of couples who tilt their heads to
the right when they kiss is:

quantile(boot_p$boot_p, c(0.025, 0.975))

##      2.5%     97.5% 
## 0.5564516 0.7258065

53/61

_

( 0.56
,

0.73 )



A _____% confidence interval for the proportion of couples who tilt their heads to
the right when they kiss is:

quantile(boot_p$boot_p, c(0.005, 0.995))

##      0.5%     99.5% 
## 0.5403226 0.7500000
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A _____% confidence interval for the proportion of couples who tilt their heads to
the right when they kiss is:

quantile(boot_p$boot_p, c(0.05, 0.95))

##        5%       95% 
## 0.5725806 0.7177419
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90% confidence interval:

95% confidence interval:

99% confidence interval:

As the confidence level increases, it is more likely that our confidence interval
captures the population median.

What's the downside to having a higher confidence level?
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Be careful interpreting confidence intervals

A 95% confidence interval for the proportion of couples who tilt their heads to
the right when they kiss is (0.56, 0.73).

Incorrect interpretation #1:
I am 95% confident that the proportion for my sample data will be in my
confidence interval.

Incorrect interpretation #2:
The probability that the proportion for the population is in my confidence
interval is 95%.

57/61

c CI )
CI tries to capture population parameter

- estimates vary
from sample to

sample of data
,

but the faraneter doesn't

-

the 4th probability
is associated with

the interval
,

not the parameter
.

the parameter is either e the interval or is not



Be careful interpreting confidence intervals

A 95% confidence interval for the proportion of couples who tilt their heads to
the right when they kiss is (0.56, 0.73).

Incorrect interpretation #3:
95% of my data is in the interval (0.56, 0.73).

Incorrect interpretation #4:
In 95% of samples I'd get a proportion in the interval (0.56, 0.73).
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A few notes about the bootstrap

The bootstrap re-uses our data.·

Typically larger samples reflect the population better. The bootstrap may
woork poorly when the sample has a small number of observations.

If the sample is biased, the bootstrap confidence interval will also be
biased.

Using the bootstrap doesn't give us better estimates than the orginal data
of the parameter of interest.

It does give us an indication of the accuracy of our estimate.

-

-

-

-
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A few notes about the bootstrap

The confidence interval method we've used is the percentile bootstrap method.·

There are other bootstrap methods that are more robust, that is they are
better at capturing the parameter the correct percentage of the time.

The percentile bootstrap method works best for large samples and when
the bootstrap distribution is approximately symmetric and continuous.

-

-
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Reminder of today's concepts:

1. Percentiles

2. Population parameters and sample statistics to estimate them

3. Sampling distribution

4. Bootstrap sampling distribution

5. Confidence intervals
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