WBII6 - STA 130 2pm section Visiting data scientist from Geotab. - final project data. heights
of spring

- In Classification Trees the outcome Variable is binary (egg., Yes, No or positive, Negative).
- Today we will oliscusin ${ }^{\text {a }}$ prediction model for a Continuous outcome. (e-g., height, weight, rating)

This Class

- Relationships between two variables
- Linear Relationships: The equation of a straight line
- Relationships between two variables
- Linear regression models
- Estimating the coefficients: Least Squares
- Interpreting the slope with a continuous explanatory variable
- Prediction/Supervised learning using a linear regression model
- R^{2} - Coefficient of Determination
- Introduction to Multiple Regression
- RMSE - Root Mean Square Error as a measure of prediction accuracy.

Relationships between two variables

Advertising Example

- Suppose that we are statistical consultants hired by a client to provide advice on how to improve sales of a particular product.
- The Advertising data set consists of the sales of that product in 200 different markets, along with advertising budgets for the product in each of those markets for three different media: TV, radio, and newspaper.

```
glimpse(Advertising)
```


Advertising Example

- It is not possible for our client to directly increase sales of the product, but they can control the advertising expenditure in each of the three media.
- Therefore, if we determine that there is an association between advertising and sales, then we can instruct our client to adjust advertising budgets, thereby indirectly increasing sales.

Increasing sales through advertising

What is the relationship between sales and Tv budget?
Advertising \%>\% ggplot(aes(x = TV, y = sales)) + geom_point() + theme_minimal()
As TV Budget increases Sales increases \therefore positive linear relationship.

Increasing sales through advertising

- In general, as the budget for TV increases sales increases.
- Although, sometimes increasing the TV budget didn't increase sales.
- The relationship between these two variables is approximately linear.

Linear Relationships

A perfect linear relationship between an independent variable x and dependent variable y has the mathematical form:

$$
y=\beta_{0}+\beta_{1} x .
$$

is called the y-intercept and β_{1} is called the slope.
at $x=0$

$$
\begin{gathered}
y=\beta_{0} \\
\beta_{1}=\frac{y^{2}-y^{\prime}}{x^{2}-x^{\prime}}
\end{gathered}
$$

Linear Relationships: The equation of a straight line

Linear Relationships: The equation of a straight line

If the relationship between y and x is perfectly linear then the scatter plot could look like:

Linear Relationships: The equation of a straight line

What is the equation of straight line that fits these points?

First four observations:

$$
\begin{aligned}
& m=\frac{133-0}{2-\sigma}=133 / 2 \\
& b=0 \quad y=\frac{133}{2} x
\end{aligned}
$$

Fitting a straight line to data

Use analytic geometry to find the equation of the straight line: pick two any points $\left(x^{(1)}, y^{(1)}\right)$ and $\left(x^{(2)}, y^{(2)}\right)$ on the line.

The slope is:

$$
m=\frac{y^{(1)}-y^{(2)}}{x^{(1)}-x^{(2)}}
$$

So the equation of the line with slope m passing through $\left(x^{(1)}, y^{(1)}\right)$ is

$$
y-y^{(1)}=m\left(x-x^{(1)}\right) \Rightarrow y=m x+b,
$$

where $b=y^{(1)}-m x^{(1)}$.

Linear Relationships: The equation of a straight line

- Relationship is clearly non-linear
- Can Still fit a Struightline.

Relationships between two variables

Relationships between two variables

- Sometimes the relationship between two variables in non-linear.
- If the realtionship is non-linear then fitting a straight line to the data is not useful in describing the relationship.

Example of Non-linear relationships

- Let y be life expectancy of a component, and x the age of the component.
- There is a relationship between y and x, but it is not linear. data is put in to data frame
$\mathrm{p}<-$ data_frame($x=$ age, $y=$ life_exp) $\%>\%$
ggplot(aes(x = x, y = y)) + geom_point() + theme_minimal()
p

Tidy the Advertising Data

- Each market is an observation, but each column is the amount spent on TV, radio, newspaper advertising.

- The data are not tidy since each column corresponds to the values of advertising budget for different media.
the amount spent on TV, Radio, newspaper should be in a column called "amount" and another Variable could be Created to Capture the advertising medium (TV, radio, newspapers).

Tidy the Advertising Data

- Tidy the data by creating a column for advertising budeget and another column for type of advertising.
- We can use the gather function in the tidy library (part of the tidyverse library) to tidy the data.

```
Advertising_long <- Advertising %>%
    select(TV, radio, newspaper, sales) %>%
    gather(key = adtype, value = amount, TV, radio, newspaper)
head(Advertising_long)
```

\#\# \# A tibble: 6 x 3
\#\# sales adtype amount
\#\# <dbl> <chr> <dbl>
\#\# 1 22.1 TV 230
\#\# 210.4 TV 44.5
\#\# $3 \quad 9.30$ TV 17.2
\#\# 4 18.5 TV 152
\#\# 5 12.9 TV 181
\#\# 6 7.20 TV 8.70
is often Called wide-datu format

Advertising Data

```
Advertising_long %>%
    ggplot(aes(amount, sales)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE) +
    facet_grid(. ~ adtype)
```


- The advertising budgets (newspaper, radio, Tv) are the input/independent/covariates and the dependent variable is sales.

Linear Regression Models

Simple Linear Regression

The simple linear regression model can describe the relationship between sales and amont spent on radio advertising through the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i},
$$

where $i=1, \ldots, n$ and n is the number of observations.

$$
\begin{aligned}
& \text { Using the long } \\
& \text { datu set. } \\
& n=200
\end{aligned}
$$

```
Advertising_long %>%
    filter(adtype == "radio") %>%
    ggplot(aes(amount, sales)) +
    geom_point()
```


Simple Linear Regression

The equation:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

is called a regression model and since we have only one independent variable it is called a simple regression model.

- y_{i} is called the dependent or target variable.
- β_{0} is the intercept parameter.
- x_{i} is the independent variable, covariate, feature, or input.

Statistical

- β_{1} is called the slope parameter.
- ϵ_{i} is called the error parameter.
 parameters.

Multiple Linear Regression

In general, models of the form

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}+\epsilon_{i},
$$

where $i=1, \ldots, n$, with $k>1$ independent variables are called multiple regression models.

- The β_{j} 's are called parameters and the ϵ_{i} 's errors.
- The values of of neither β_{j} 's nor ϵ_{i} 's can ever be known, but they can be estimated.
- The "linear" in Linear Regression means that the equation is linear in the parameters β_{j}.
- This is a linear regression model: $y_{i}=\beta_{0}+\beta_{1} \sqrt{x_{i 1}}+\beta_{2} x_{i 2}^{2}+\epsilon_{i}$
- This is not a linear regression model (i.e., a nonlinear regression model):
$y_{i}=\beta_{0}+\sin \left(\beta_{1}\right) x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}$

non-inear function of β i

$$
y_{i}=\beta_{0}+\beta_{1} \sqrt{x_{i 1}}+\beta_{2} x_{i 2}^{2}+\varepsilon_{i}
$$

$i=1, \ldots, 200$ where 200 is the number of observations in sales dater (i.e., number of markets).

x_{1}	x_{2}	x_{3}
radio	newspaper	$T V$
x_{11}	x_{12}	x_{13}
x_{21}	x_{22}	x_{23}
x_{31}	x_{32}	x_{33}
\vdots	\vdots	\vdots
\vdots	\vdots	\vdots

$$
y=5 x+3
$$

linear in x.

Least Squares

Fitting a straight line to Sales and Radio Advertising


```
## # A tibble: 6 x 2
## sales amount
## <dbl> <dbl>
## 1 22.1 37.8
## 2 10.4 39.3
## 3 9.30 45.9
## 4 18.5 41.3
## 5 12.9 10.8
## 6 7.20 48.9
```


Fitting a straight line to Sales and Radio Advertising

```
head(Advertising_long %>%
    filter(adtype == "radio")) %>%
    select(sales,amount)
```

\#\# \# A tibble: 6 x 2
\#\# sales amount
\#\# <dbl> <dbl>
\#\# 1 22.1 37.8
\#\# 2 10.4 39.3
\#\# 3 9.30 45.9
\#\# 4 18.5 41.3
\#\# 5 12.9 10.8
\#\# $6 \quad 7.20 \quad 48.9$
$m=\frac{22.1-10.4}{37.8-39.8}=-5.85, b=22.1-\frac{22.1-10.4}{37.8-39.8} \times 37.8=243.23$. So, the equation of the straight line is:

$$
y=243.23-5.85 x
$$

Fitting a straight line to Sales and Radio

 Advertising

Fitting a straight line to Sales and Radio Advertising

- For a fixed value of amount spent on radio ads the corresponding sales has variation. It's neither strictly increasing nor decreasing.
- But, the overall pattern displayed in the scatterplot shows that on average sales increase as amount spent on radio ads increases.

Least Squares

The Least Squares approach is to find the y-intercept β_{0} and slope β_{1} of the straight line that is closest to as many of the points as possible.

Goal of Least Squares: minimize the errors.

Estimating the coefficients: Least Squares

To find the values of β_{0} and slope β_{1} that fit the data best we can minimize the sum of squared errors $\sum_{i=1}^{n} \epsilon_{i}^{2}$:

$$
\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

$$
y_{i}=\beta_{0}+\beta_{i} x_{i}+\varepsilon_{i}
$$

$$
p
$$

So, we want to minimize a function of β_{0}, β_{1}

$$
L\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

$$
\begin{aligned}
& \varepsilon_{i}=g_{i}-\left(\beta_{0}+\beta_{i} x_{i}\right) \\
& \varepsilon_{i}^{2}=\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
\end{aligned}
$$

where x_{i} 's are numbers and therfore constants.
minimize the Sum of Squared errors

$$
\sum_{i=1}^{n} \varepsilon_{i}^{2}
$$

Estimating the coefficients: Least Squares

- The derivative of $L\left(\beta_{0}, \beta_{1}\right)$ with respect to β_{0} treats β_{1} as a constant. This is also called the partial derivative and is denoted as $\frac{\partial L}{\partial \beta_{0}}$.
- To find the values of β_{0} and β_{1} that minimize $L\left(\beta_{0}, \beta_{1}\right)$ we set the partial derivatives to zero and solve:

$$
\begin{aligned}
& \frac{\partial L}{\partial \beta_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0 \\
& \frac{\partial L}{\partial \beta_{\boldsymbol{p}}}=-2 \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) x_{i}=0 .
\end{aligned}
$$

The values of β_{0} and β_{1} that are solutions to above equations are denoted $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ respectively.

$$
L\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2} \quad \begin{aligned}
& y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} \\
& \text { minimize }_{\text {Square error }}
\end{aligned}
$$

Now, take derivative w.r.t. Bo to find estimates

$$
\begin{aligned}
\frac{d L\left(\beta_{0}, \beta_{i}\right)}{d \beta_{1}}=\frac{\partial L}{\partial \beta_{0}} & =\frac{d}{d \beta_{0}}\left(\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}\right) \\
& =\sum_{i=1}^{n} \frac{d}{d \beta_{0}}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2} \\
& =\sum_{i=1}^{n} 2\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)(-1)
\end{aligned}
$$

$\operatorname{Set} \frac{2 L}{2 B_{0}}=0$

Solve for $\hat{\beta}$

$$
\begin{aligned}
& \sum_{i=1}^{n} 2\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}\left(x_{i}\right)(-1)=0\right. \\
& \text { use } \hat{\beta}_{0}, \hat{\beta}_{1} \text { to } \\
& \text { inclicate that } \\
& \Rightarrow \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
& \Rightarrow \sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} \hat{\beta}_{0}-\sum_{i=1}^{n} \hat{\beta}_{1} x_{i}=0 \\
& \Rightarrow \sum_{1}^{n} y_{i}-\underbrace{n} \hat{\beta}_{0}-\hat{\beta}, \sum_{1} x_{i}=0 \\
& \text { Sum a content } n \text { times. } \\
& \Rightarrow \hat{\sum} y_{i}-\hat{\beta_{1}} \sum x_{i}=n \hat{\beta} \\
& \Rightarrow \sum^{n} y_{i}-\hat{\beta}_{1} \sum_{i}=\hat{\beta}_{0} \Rightarrow \bar{y}-\hat{\beta}_{1} \bar{x}=\hat{\beta}_{0} \\
& \bar{y}=\sum_{i}^{n} y_{i} / n, \bar{x}=\sum x_{i} / n
\end{aligned}
$$

Estimating the coefficients: Least Squares

It can be shown that estimate of y-intercept

$$
\hat{\beta_{0}}=\bar{y}-\hat{\beta_{1}} \bar{x}
$$

$$
\hat{\beta_{1}}=\frac{\left(\sum_{i=1}^{n} y_{i} x_{i}\right)-n \bar{x} \bar{y}}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}}, \text { estimate of slope. }
$$

where, $\bar{y}=\sum_{i=1}^{n} y_{i} / n$, and $\bar{x}=\sum_{i=1}^{n} x_{i} / n$.
$\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are called the least squares estimators of β_{0} and β_{1}.

Estimating the Coefficients Using R Formula syntax in R

The R syntax for defining relationships between inputs such as amount spent on newspaper advertising and outputs such as sales is:

```
sales ~ newspaper
```

The tilde ~ is used to define the what the output variable (or outcome, on the left-hand side) is and what the input variables (or predictors, on the right-hand side) are.

A formula that has three inputs can be written as

```
sales ~ newspaper + TV + radio
```

$\xrightarrow{\infty}$
dependent

noseremolnts.

Estimating the Coefficients Using lm()

\#\# Estimate Std. Error t value Pr (>|t|)
\#\# (Intercept) $12.35140710 .6214201919 .8760964 .713507 \mathrm{e}-49$
\#\# newspaper $0.05469310 .01657572 \quad 3.299591 \quad 1.148196 \mathrm{e}-03$

- (Intercept) is the estimate of $\hat{\beta}_{0}$.
- newspaper is the estimate of $\hat{\beta}_{1}$.

Estimating the Coefficients Using R

```
Advertising_long %>%
    filter(adtype == "radio") %>%
    ggplot(aes(amount, sales)) +
    geom_point() +
    geom_smooth(method = "lm", se = FALSE) +
    theme_minimal()
```


the preolicted Sales at radio ad amount $=40$ is ~ 17
distance from observed to predictalt us called

- The blue line is the estimated regression line with intercept 12.35 and slope 0.05 . re espial.
- geom_smooth(method = "lm", se = FALSE) adds the linear regression to the ${ }^{35}$

Interpreting the Slope and Intercept with a Continuous Explanatory Variable

The estimated linear regression of sales on newspaper is:

$$
y_{i}=12.35+0.05 x_{i},
$$

where y_{i} is sales in the $i^{\text {th }}$ market and x_{i} is the dollar amount spent on newspaper advertising in the $i^{\text {th }}$ market.

- The slope $\hat{\beta}_{1}$ is the amount of change in y for a unit change in x.
- Sales increase by 0.05 for each dollar spent on advertising.
- The intercept $\hat{\beta}_{0}$ is the average of y when $x_{i}=0$.
- The average sales is 12.35 when the amount spent on advertising is zero.

Prediction using a Linear Regression Model

After a linear regression model is estimated from data it can be used to calculate predicted values using the regression equation

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} .
$$

\hat{y}_{i} is the predicted value of the $i^{\text {th }}$ response y_{i}.
The $i^{\text {th }}$ residual is

Prediction using a Linear Regression Model

The amount spent on newspaper advertising in the first market is:

```
Advertising %>% filter(row_number() == 1)
```


$$
\begin{aligned}
& \tilde{y}_{i}=12.35+.05 x_{i} \\
& \hat{y}_{i}=12.35+.05(69.2)
\end{aligned}
$$

- The predicted sales using the regression model is: $12.35+0.05 \times 69.2=16.14$.
- The observed sales for region is 22.1.
- The error or residual is $y_{1}-\hat{y_{1}}=5.96$.

Prediction using a Linear Regression Model

The predicted and residual values from a regression model can be obtained using the predict() and residual() functions.

```
mod_paper <- lm(sales ~ newspaper, data = Advertising)
sales_pred <- predict(mod_paper)
head(sales_pred)
```

\#\#	1	2	3	4	5	6
\#\#	16.13617	14.81807	16.14164	15.55095	15.54548	16.45339

```
sales_resid <- residuals(mod_paper)
head(sales resid)
```

\#\#	1	2	3	4	5	6
\#\#	5.963831	-4.418066	-6.841639	2.949047	-2.645484	-9.253389

Measure of Fit for Simple Regression

- The regression model is a good fit when the residuals are small.
- Thus, we can measure the quality of fit by the sum of squares of the residuals $\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$.
- This quantity depends on the units in which y_{i} 's are measured. A measure of fit that does not depend on the units is:

$$
R^{2}=1-\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} .
$$

- R^{2} is often called the coefficient of determination.
- $0 \leq R^{2} \leq 1$, where 1 indicates a perfect match between the observed and predicted values and 0 indicates an poor match.

$$
R^{2}=1=1-0 \Leftrightarrow \begin{aligned}
& e_{i}^{2}=0 \\
& \left(y_{i} \hat{y}_{i}\right)=0 \quad f_{i} .
\end{aligned}
$$

Measure of Fit for Simple Regression

The summary() method calculates R^{2}

```
mod_paper <- lm(sales ~ newspaper, data = Advertising)
mod_paper_summ <- summary(mod_paper)
mod_paper_summ$r.squared
```

\#\# [1] 0.05212045

- $R^{2}=0.0521204$. This indicates a poor fit.

Using Linear Regression as a Machine Learning/Supervised Learning Tool

The diamonds data set contains the prices and other attributes of almost 54,000 diamonds. The variables are as follows:

```
## Observations: 53,940
## Variables: 10
## $ carat <dbl> 0.23, 0.21, 0.23, 0.29, 0.31, 0.24, 0.24, 0.26, 0.22, ...
## $ cut <ord> Ideal, Premium, Good, Premium, Good, Very Good, Very G...
## $ color <ord> E, E, E, I, J, J, I, H, E, H, J, J, F, J, E, E, I, J, ...
## $ clarity <ord> SI2, SI1, VS1, VS2, SI2, VVS2, VVS1, SI1, VS2, VS1, SI...
## $ depth <dbl> 61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, ...
## $ table <dbl> 55, 61, 65, 58, 58, 57, 57, 55, 61, 61, 55, 56, 61, 54...
## $ price <int> 326, 326, 327, 334, 335, 336, 336, 337, 337, 338, 339,\ldots..
## $ x <dbl> 3.95, 3.89, 4.05, 4.20, 4.34, 3.94, 3.95, 4.07, 3.87, ...
## $ y <dbl> 3.98, 3.84, 4.07, 4.23, 4.35, 3.96, 3.98, 4.11, 3.78, ...
## $ z <dbl> 2.43, 2.31, 2.31, 2.63, 2.75, 2.48, 2.47, 2.53, 2.49, ...
```

Question: Predict the price of diamonds based on carot size.

Predicting the Price of Diamonds

Let's select training and test sets.
set.seed(2)
diamonds_train <- diamonds \%>
mutate(id = row_number()) \%>\%
sample_frac(size = 0.2)
diamonds_test <- diamonds \%>\%
mutate(id = row_number()) \%>\%
\# return all rows from diamonds where there are not
\# matching values in diamonds_train, keeping just
\# columns from diamonds.
anti_join(diamonds_train, by = 'id')
3

$s e$

Predicting the Price of Diamonds

- Now fit a regression model on diamonds_train.

```
mod_train <- lm(price ~ carat, data = diamonds_train)
mod_train_summ <- summary(mod_train)
mod_train_summ$r.squared
```

\#\# [1] 0.848017
Indicates good fit.

- Evaluate the prediction error using root mean square error using the training model on diamonds_test.

$$
\text { RMSE }=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}
$$

- RMSE can be used to compare different sizes of data sets on an eual footing and the square root ensures that RMSE is on the same scale as y.

Predicting the Price of Diamonds using Simple Linear Regression

- Calculate RMSE using test and training data. No ge $/$ Fit on training dater

```
Y_test <- diamonds_test$price
yhat_test <- predict(mod_train, newdata = diamonds_test)
n_test <- length(diamonds_test$price)
# test RMSE
rmse <- sqrt(sum((y_test - yhat_test)^2) / n_test)
rmse
```

\#\# [1] 1548.794

- the two numbhers

```
Y_train <- diamonds_train$price
yhat_train <- predict(mod_train, newdata = diamonds_train)
n_train <- length(diamonds_train$price)
```

\# train RMSE
sqrt(sum((y_train - yhat_train)^2) / n_train)
are close no
evidence of
over fitting.

Predicting the Price of Diamonds using Multiple Linear Regression

We will add other variables to the regression model to investigate if we can decrease the prediction error.

```
mrmod_train <- lm(price ~ carat + cut + color + clarity, data = diamonds_train)
mrmod_train_summ <- summary(mrmod_train)
mrmod_train_summ$r.squared
```


Y_test <- diamonds_test\$price
yhat_test <- predict(mrmod_train, newdata = diamonds_test)
n_test <- length(diamonds_test\$price)
mr_rmse <- sqrt(sum((y_test - yhat_test)^2) / n_test)
mr_rmse
\#\# [1] 1161.982

$$
y \text { from } y \text { sing } \operatorname{yn}
$$

- The simple linear regression model had $R^{2}=0.848017$ and RMSE $=1548.794103 .46 / 46$

Why minimize $\sum_{i=1}^{n} e_{i}^{2}$ instead of

$$
\left.\begin{aligned}
& \sum_{i=1}^{n} e_{i} ? \\
& y=x^{2} \text { has a } \\
& \text { guaranteed min. }
\end{aligned}|\quad| \quad \right\rvert\,=x^{2}
$$

